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ABSTRACT

This paper summarizes the development of a convergent weighted-averaging interpolation scheme which
can be used to obtain any desired amount of detail in the analysis of a set of randomly spaced data. The
scheme is based on the supposition that the two-dimensional distribution of an atmospheric variable can be
represented by the summation of an infinite number of independent waves, i.e., a Fourier integral repre-
sentation. The practical limitations of the scheme are that the data distribution be reasonably uniform and
that the data be accurate. However, the efiect of inaccuracies can be controlied by stopping the convergence
scheme before the data errors are greatly amplified. The scheme has been tested in the analysis of 500-mb
height data over the United States producing a result with details comparable to those obtainable by careful
manual analysis. A test analysis of sea level pressure based on the data obtained at only the upper air net-
work stations produced results with essentially the same features as the analysis produced at the National
Meteorological Center. Further tests based on a regional sampling of stations reporting airways data demon-
strate the applicability of the scheme to mesoscale wavelengths,

1. Introduction

In recent years there has been considerable effort put
forth toward improving the interpolation phase of ob-
jective analysis schemes so that more detail can be
represented in the analyses. The type of scheme which
has been most successful at doing this is a surface-
fitting scheme, that is, the method of fitting a geometri-
cal surface to the reported data and calculating the
values determined by that surface at any other points of
interest, specifically, the grid points. The works of
Dellert,? of Pfeffer et al.* and of Penn, Xunkel and
Mount (1963) are all based on that method. It is the
author’s opinion that such methods suffer from three
major disadvantages: the calculations are complicated
and require considerable time to complete; the data to
which the surface is fitted are chosen in a rather arti-
ficial manner (that which produces the best results); the
effect of erroneous data can be disastrous since each
datum is given equal ranking in determining the shape
of the surface.

In order to avoid the undesirable effects which er-

! The research in this report has been sponsored by the Na-
tional Science Foundation under Grant NSF G-19688.

2 Dellert, G. T., Jr., 1962: The triangle method—an objective
analysis technique. Unpublished manuscript of the U. S. Weather
Bureau, presented at the 43rd Annual Meeting of the American
%ggeo;glogical Society in New York City, 21-24 January

, 18 pp.

8 Pfeffer, R. L., et al., 1963: Objective analysis by polynomial
fitting. Unpublished manuscript of the Lamont Geological Labora-
tory, Columbia University, presented at the 43rd Annual Meeting
of the American Meteorological Society in New York City, 21-24
January 1963, 13 pp.

roneous data produce, a smoothing process has been
recommended* employing a least-squares fit of the sur-
face to the data with the influence of each datum
weighted according to its distance from the grid point.
This latter method is actually a combination of a sur-
face-fitting method and the weighted-averaging method
of interpolation.

The weighted-averaging method determines the
values of the variable at grid points as the sum of
weighted values of the individual data. The closer a
data point to the grid point in question, the greater in-
fluence the datum at that point exerts. Such schemes,
variously refined, are now being used for determining
the broad features of atmospheric distributions (Berg-
thérrson and D66s, 1955 ; Cressman, 1959 ; McDonell®).
The major disadvantage of such schemes has been their
tendency to smooth out all small variations in the field,
whether caused by data errors or actual atmospheric
disturbances.® This paper describes a technique for re-

4 Pfeffer et al., ibid.

8 McDonell, J. E., 1962: On the objective analysis system used
at the National Meteorological Center. Tech. Memo. No. 23,
U. S. Weather Bureau, 31 pp.

¢ Cressman (1959) has succeeded in depicting smaller-scale
components by the application of weight factors using successively
smaller influence radii which are expressed in terms of grid length.
The detail of the analysis is, therefore, limited by one’s choice of
grid length rather than by the data distribution. Also, 2 smoothing
operator (Shuman, 1957) is applied to eliminate wavelengths of
two grid units or less. Although this technique may be adequate
for large-scale analyses, it does not insure the retention of the
smallest components which can he adequately described from a
given set of data,
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gaining the details lost in applying such a weighted-
averaging scheme.

The weight factor used in this objective analysis has
been developed from the fundamental premise that the
two-dimensional distribution of an atmospheric vari-
able can be represented by the summation of an
infinite number of independent harmonic waves, that is,
by a Fourler integral representation.” In its current
form,%® the weight factor is explicitly related to the
density of observations which, after all, determines the
ultimate resolution obtainable in any strictly scalar
analysis. Because of the data density dependency, ap-
plications of the scheme are restricted to regions in
which the distribution of data is reasonably uniform,
although this does not exclude the possibility that
means can be found to tie together the analyses in
regions of vastly differing data densities. As will be
shown, the technique of regaining lost details is also
consistent with the fundamental premise.

2. Development of the interpolation scheme

Under the assumption that the distribution of an
atmospheric quantity, f(x,y), can be depicted by a
Fourier integral representation, we may define a cor-
responding smoothed function, g(,y), which is ob-
tained by applying a filter to the original function as
follows:

21 poo
glx,y)= / ] Sz cost, y+r sinfwrdrds, (1)
o Jo

where the weight factor, or filter, is
w=(1/4xk) exp (—r*/4k), (2)

with 7 and 6 as polar coordinates, the origin being at the
point (x,v), and % being a parameter determining the
shape of the weight factor which is to be related to the
density of the observed data concerning f(x,y).

Rearranging (1), we may express the weight factor in
an alternate form:

27 0
glxy)= / / f(x+7 cosh, y-+r sinf)
Q Q0

X (n/2w)d(r?/4k)d8, (3)
where

n=exp(—7r/4k) 4)

7 Sasaki, Y., 1960: An objective analysis for determining initial
conditions for the primitive equations. Tech. Rep. (Ref. 60-16T),
Dept. of Oceanography and Meteorology, Texas A & M Uni-
versity, 22 pp.

8 Barnes, S. L., 1960: An objective analysis of a pre-frontal
squall line. Tech. Rep. (Ref. 60—-17T), Dept. of Oceanography and
Meteorology, Texas A & M University, 44 pp.

9 Barnes, S. L., 1962: An improved interpolation technique for
numerical weather map analysis. Teck. Rep. (Ref. ARL~1296-3),
Atmospheric Research Laboratory, University of Oklahoma Re-
scarch Institute, 14 pp.
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is the new weight factor. This form (3) is preferred over
the form given by (1), since in (1) the maximum weight
is not applied at r=0.

Interpolation by (3) is not practical for two reasons:
first, we don’t know the analytical form of f(x,y) (in-
deed, that is what we are trying to represent based on a
few random pieces of information), and second, we can-
not integrate the function to infinity. Therefore, we
must approximate g(x,y) by placing a finite limit on the
region of influence of any datum concerning f(x,y) and
by taking a weighted average of only those M number
of data within that region. In a practical form,

> () s
glay) = (3)
Z_: 7(7;)

It is obvious from (4) that

/ i [ ) (1/27)nd (r*/4k)do=1.

Integrating with respect to 8 and then to some distance
R, we may write the above integral

[ nd (r2/4k)+ / i nd(r2/4k)=1.
0 R

We define the second of these integrals as e. Thus,
R
/ exp(—7*/4k)d(r?/4k)=1—e.
0

Carrying out the integration, we see that

exp(— R*/4k)=¢
or
R?*/4k=—In e=E. (6)

If € is small enough, we can represent the weighted in-
fluence of any datum with sufficient accuracy. For ex-
ample, choosing E=4 means we have represented 98
per cent of the influence of any datum within the cir-
cular region whose radius is R. We define R as the
“radius of influence” of the weight factor . The re-
lationship (6) will be used later to form a link between
the data distribution and the choice of weight factor.

Since the component waves which make up the dis-
tribution f(x,y) are independently related, we shall in
the following refer to only a single harmonic wave,
keeping in mind that the discussion applies equally well
to all component waves present in f(x,y). To further
simplify the discussion, we shall consider only a one-
dimensional wave,

J(x)=A sin ax O]
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where a==/L, L being the half wavelength. Substitu-
tion of (7) into (3) yields

g(x)=D(4 sin ax)=Df(x) (8)
where
D= exp (—ka?), 9)

D being the “accuracy index’ relating to the fractional
amount of the original wave amplitude retained in the
smoothed interpolated function g(x).

In (9), D is a function of two lengths, k, which is re-
lated to the weight factor and determines its shape, and
a, which is related to the wavelength of the disturbance.
It is preferable to express those two lengths, and hence
the accuracy index D, in terms of the one length which
limits the detail and accuracy of the interpolated re-
sult, that is, the distance between data points. This can
be done by first substituting (6) and the definition of a
into (9), the result being

D= exp [— (x¥/4E) (R/L)*],

and then dividing the numerator and denominator in the
exponent by (d)? so that

D= exp [— («*/4E) [(R/d)/(L/d)]*].

The parameter d is defined as the average distance be-
tween data points, a necessity arising from the fact that
our observation sites are not uniformly spaced. In the
following discussion, d is used in two ways, 1) meaning
the average for the whole set of observation sites, and
2) meaning the average for the group of sites immedi-
ately surrounding any given site.

Eq (11) is presented in graphical form in Fig. 1 with
E=4. Note that the value of the ordinate, R/d, is de-
pendent upon the choice of weight factor. The region
between 0 and 1 is not shown, since if the weight factor
has a region of influence which does not include at least
two data points, the resultant analysis will have first
order discontinuities, possibly even zero order. In
general, R should always be chosen greater than d;
(R/d>1).

Along the abscissa, waves which fall in the region
0<L/d<1 should be ignored since it is impossible to
describe any feature of such short waves. Analysis of
waves whose dimensions are such that L/d=1 is
possible only when the data points lie at the maximum
and minimum points of the wave. It is important to
note that random errors in the observed data generate
fictitious waves of dimension L/d=1 (using the second
meaning of d). In general then, waves whose dimensions
are such that 0<L/d<1 should be filtered from the
analysis as much as possible. We can be reasonably
confident that waves of dimensions /d>2 are ac-
curately described by the interpolated result, except
that they suffer a loss in the magnitude of their ampli-
tude. For example, suppose we have chosen a weight

(10)

(11)

OF APPLIED METEOROLOGY

VoLuME 3

factor such that R/d=1.8 and the resultant inter-
polated pattern shows a predom nant wave of length
L/d==3. Eq (11) (see also Fig. 1’ shows that we have
represented only 80 per cent of he amplitude of this
wave, 20 per cent of it having Leen lost through the
smoothing inherent in the scheme.

In searching for a technique wkich might correct the
analysis by regaining some of thet lost amplitude, the
following experiment was designed:

1) Choose a weight factor apprcpriate to the data dis-
tribution and the scale of disturbance to be ana-
lyzed, and perform an inital interpolation over
the grid. This is a “first-guess” analysis.

2) At each data point, subtract from the reported
value the value obtained in the first-guess analysis
at that point. (The data point is regarded as being
in the center of the square formed by the four
nearest grid points, regardless of its actual position
within that area. The interpolated value at the
data point is determined by the arithmetic average
of the interpolated values al. the four nearest grid
points.)

3) Determine the smoothed field of difference values
by interpolation of the inf>rmation obtained in
Step 2 using the same weigat factor as was used
initially.

4) Add the ficld obtained in Step 3 to the first-guess
analysis, producing a second -guess analysis.

5) Repeat Steps 2 through 4 replacing the first-guess
analysis by the second-guess, then replacing the
second by the third, etc. Continue iterating until
the differences have been d;minished to tolerable

amounts.
3 -
] /:
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F16. 1. Tnitial accuracy index D as a fanction of half wavelength
L, average distance between data points d, and radius of influence
R of the weight factor » with £=4.
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A discussion of the experimental results using that
technique will be found in the next section. It suffices to
say here that the results were better than anticipated,
for they showed an improvement in the representation
of not only the longer waves, but of all details of the
pattern. It was found afterward that the convergence of
each succeeding ‘‘guess” toward the “real” field of
values was inherent in the iteration scheme. The reason
is explained in the following paragraphs.

Using the simple one-dimensional example again, we
wish to find out if

lim [/(2)— g ()]1=0 (12)

where IV is the number of iterations, f(x) (=4 sin ax) is
the “real” distribution, and gy(x) is the interpolated
field obtained after N iterations. As before, the first
interpolation results in the initial guess

go(x)=Df(x). (13)
Steps 2, 3, and 4 of the process produce
g1(%) = go (%) 4L/ (%) — go(x) 1D. (14)

Substitution of (13) into (14) yields
g()=Df(x)[1+(1-D)].

Similarly, it can be shown that the N-th iteration yields

gn(@)=fD Y (1—D)"

n=0

(13)
and (12) may then be written

lim (f@[1~D ¥ (1—D)")T=0.

N—w n=0

(16)

The question thus reduces to the following: we must
determine whether or not

lim [3° (1—D)]r=1/D.

N>  n=0

an

The ratio test of the power series in (17) shows that

(1_D)n+l_

18
D) (18)
Recalling that D is constant for any given wavelength
and for any choice of weight factor (and the weight fac-
tor was not changed during the iteration process), then
1—D is also constant, Furthermore, from (11) we see
that 0< DL 1. From the practical viewpoint, we can re-
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I1c. 2. Final accuracy index D/ as a function of initial D
and number of iterations N.

move from consideration the limiting cases D=0 and
D=1. Therefore, the right-hand side of (18) is a con-
stant less than one, the requirement for convergence of
the series in (17). That series is, in fact, a geometric
series converging to the value

1 1

. (19)
1-(1-D) D
The question on (12) may now be resolved. Since the
premise of the interpolation scheme is that the waves
which make up the distribution f(x,y) are independent,
the argument applies individually to each component
wave. Thus, the iteration scheme regains the amplitude
of not only the longer waves, but of allwaves represented
in the data. )
We may now define a new accuracy index from (15) as
that obtained after N iterations, that is,

N
D'=DY (1-D)~. (20)
=0

Table 1 shows calculated values of D’ for various initial
D and up to 10 iterations. Fig. 2 shows the same re-
lationships in graphical form. It will be noted from
Fig. 1 that once a weight factor is chosen (fixing R/d), a
direct correspondence exists between initial D and L/d.
In other words, since the weight factor is held constant,
we have a means of tracing the final accuracy of our re-
sult back through the initial accuracy index D to the
wavelength of a particular disturbance. In Table 1, this
relationship is shown for a weight factor choice such
that R/d=1.6. For example, if in the final analysis we
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note a wave of a length such that L/d=1.5 and we have
performed 3 iterations of the interpolation process using
a weight factor such that R/d=1.6, we will have in-
creased the amplitude accuracy of that wave from an
initial 50 per cent to 94 per cent.

The question then arises, “If we can make the final
analysis fit the data as exactly as desired through re-
peated iterations of the interpolation, how many itera-
tions are necessary or desirable?”” The answer to this
question necessarily depends upon the type of data in-
put. If the data are accurate, or if the errors involved
comprise but a small portion of the total variations ob-
served over the field, and if one desires to depict the
maximum detail exhibited by the data, then one is
justified in “forcing’’ the analysis to converge to fit the
data nearly exactly. On the other hand, if data errors
are known to be of fairly large amplitude, or if one
wishes to see only the broad features of the field, then a
fewer number of iterations are called for. In particular,
when data errors are a problem, as with most upper air
analyses, then a table such as Table 2 should be pre-
pared. Table 2 shows the amount of amplitude accuracy
gained in each iteration as a function of the initial ac-
curacy. The values were obtained from Table 1 by the
following relation:

ADl=D¥n+1-D’n. (21)

As in Table 1, the relations between initial D and L/d
are shown for R/d=1.6. Note in Table 2 that the maxi-
mum increase in amplitude during the first iteration oc-
curs at D=0.5; [(L/d)=1.5]. During the second itera-
tion, the maximum increase moves to the D=0.3
column; [(L/d)=1.1]. And so on with each iteration the
maximum increase moves toward lower values of D
(shorter waves). As mentioned before, random errors in
the data field will produce fictitious waves of a length
L/d=1. It makes sense, therefore, to stop the iterations
just before waves of this size are increased in amplitude
by an amount exceeding the increase in the longer wave
amplitudes. In the case under discussion (R/d=1.6),

TABLE 1. Values of final accuracy index D’ as a function of
initial D and number of iterations ¥V from equation (20). Relation-
ships between L/d and D are for R/d=1.6.

L/d 08 10 11 13 15 1.8 21 27 39
Y 01 02 03 04 05 06 07 08 09
N

0.20
0.36
0.49
0.59
0.67
0.74
0.79
0.83
0.87
0.89
0.91

0.30
0.51
0.66
0.76
0.83
0.88
0.92
0.94
0.96
0.97
0.98

0.40
0.64
0.78
0.87
0.92
0.95
0.97
0.98
0.99
1.00

0.50
0.75
0.88
0.94
0.97
0.99
1.00

0.70
0.91
0.97
0.99
1.00

0.80
0.96
0.99
1.00

0.60
0.84
0.94
0.97
0.99
1.00

0.90
0.99
1.00
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Table 2 shows that N should not be allowed to exceed 3
since with the 4th iteration the column L/d=1.0 is in-
creased by 8 per cent, surpassirg the increase in any
other column.

Of course, in any practical application of the iteration
scheme, the economic factor of machine time enters the
picture placing further limitation upon the number of
iterations performed.

3. Experimental results

The initial tests of the iteration-interpolation scheme
were performed on an IBM 709) using 500-mb height
data as reported over the United States and part of
Canada. A 27X 18 grid was used with a 100-n mi mesh
size. Seventy-seven data points vere located within the
boundaries of the grid. Fig. 3 shcws the grid and distri-
bution of data points. In this cas:, d=300 n mi was ap-
plicable, and a weight factor was chosen such that
R/d=1.6, which is to say that the radius of influence of
any datum is 480 n mi.

The number of data affecting cach grid point is used
as a reliability check with a minimum of two pieces of
data required for interpolation. A smoothed distribution
of the reliability grid for this case of 500-mb heights is
shown in Fig. 4. There were only a few points along the
southeastern boundary of the grid which could not be
interpolated. Within the major portion of the United
States, no fewer than 12 pieces of data, and in a few
cases as many as 20, were considered in determining the
interpolated value at the grid points.

Fig. 5 shows the results of the “first-guess’ inter-
polation of 500-mb heights at 1200 GCT 15 March 1962.
The method of obtaining this and all subsequent
analyses was as follows: the interpolated values at each
grid point are printed out, plotted on a reproduction of
the grid, and analyzed manually "y linear interpolation
between grid points. Automated means of performing
this step can be used if adequate facilities are available.
Since this particular program was not meant to be
operational, the method used sezmed most expedient,

TaBLE 2. AD’ as a function of inititl D and number of itera-
tions N from equation (21). Relationships between L/d and D are
for R/d=1.6.

L/d 08 10 11 13 15 18 21 27 39
R 01 02 03 04 05 06 07 08 09
N

0.09
0.01
0.00

0.16
0.03
0.01
0.00

0.24
0.14
0.09
0.05
0.03
0.02
0.01
0.01
0.01
0.00

0.25
0.13
0.06
0.03
0.02
0.01
0.00

0.24
0.10
0.03
0.02
0.01
0.00

0.21
0.06
0.02
0.01
0.00

0.09
0.08
0.07
0.07

1 0.16
2

3

4

5 0.06

6

7

8

9

0.13
0.10
0.08
0.07
0.05
0.04
0.04
0.02
0.02

0.21
0.15
0.10
0.07
0.05
0.04
0.02
0.02
0.01
0.01

0.05
0.05
0.04
0.04
10 0.04
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F16. 3. Result of initial interpolation (F=0) of 500-mb contours for 1200 GCT 15 March 1962.
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F16. 7. Manual analysis of difference field generated by subtracting first interpolated values (Fig. 5) from reported 500-mb
heights at each data point. Contours are labelled in feet.
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Fi6. 8. Machine analysis of same difference data shown in Fig. 7. Contours are labelled in feet.
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Fic. 10. Manual analysis of sea level pressure in millibars for 1200 GCT 15 March 1962, (2fter NMC.)
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Fic. 11. Machine analysis of sea level pressure for 1200 GCT 15 March 1962 based on data shown.

even if not completely objective. Fig. 5 is also a prime
example of the problem of over-smoothing in a weighted-
averaging scheme. There existed a 17,400-ft low center
just east of Omaha, Nebraska (OMA), and heights
above 18,400 ft were reported in Arizona.

Fig. 6 shows the interpolated results after 3 iterations.
The reported height values and winds are plotted, al-
though it should be mentioned that wind information
was not used in the analysis. The results within the in-
terior of the grid agree quite well with the reported
heights. Around the boundaries, the fit of the heights is
adequate, but the apparent sharp trough off the Cali-
fornia coast was not represented. It is particularly in-
teresting to see how the scheme reacted to the obviously
erroneous height reported at Portland, Maine (PWM),
17,230 ft. A recheck of the reported sounding failed to
show any calculation error, but even the National
Meteorological Center (NMC) analysis disregarded the
reported value. Likewise, the IBM 7090 disregarded the
report. The explanation is fairly simple, however, The
distance between PWM and the adjacent stations is on
the order of 150 n mi. The error then amounts to a wave
of length L/d~0.5 since d=300 n mi. Checking again
with Fig. 1, since R/d=1.6, the amplitude of a wave of
that dimension would have initially been represented by
something less than 10 per cent. Fig. 2 shows that even
after 3 iterations, still less than 30 per cent of this ampli-
tude has been retained.

Figs. 7, 8 and 9 are examples of the difference fields
generated in the iteration steps, Fig. 8 and 9 showing
the convergence of scheme. Fig. 7 is a manual analysis
of the differences between the data point values and the
first-guess interpolation values (Fig. 5). Note the error
at PWM showing up as the large negative value off the
coast of Maine, and also note the low center in the
middle section of the grid with the short wave pattern
to the southwest. (The short wave was associated with
a surface system as will be shown later.) Fig. 8 is the
result of applying the weight factor to the difference
data used to obtain Fig. 7. Fig. 9 shows the final
smoothed difference field after 3 iterations. Note that
over the majority of the United States the differences
have been reduced to generally less than 20 ft, a value
approaching the normal computational accuracy of the
radiosonde method. This indicates that further itera-
tions would not be called for.

Since at 500 mb the most predominant waves are long
waves (long with respect to the spacing between sta-
tions), it was decided to test the resolution of the
scheme by using sea level pressure data which generally
contain short waves of larger amplitude than found at
500 mb. Fig. 10 shows the surface analysis after NMC
for 1200 GCT 15 March 1962, That analysis is based on
the dense network of surface stations in the United
States and Canada. Fig. 11 is the machine analysis of the
same map as shown in Fig. 10, but it is based on only
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F16. 12. Machine analysis of sea level pressure in millibars for 0000 GCT 18 February 1961.
Fronts and weather determined from manual analysis.

those pressures shown plotted, i.e., at the upper air re-
porting stations. Three iterations were carried out.

Although the resolution and amplitude of the small
highs and lows over the west central part of the map are
not as good as the manual analysis, the essential features
are shown in the machine result. Of course, one cannot
hope to depict the frontal discontinuities on the basis of
scalar analysis of a coarse data distribution. The surface
lows in the vicinity of western Kansas are associated
with the short wave trough at 500 mb.

In an effort to see just how much detail could be ob-
tained from the interpolation scheme, another test case
was assembled, this time dealing with the surface
analyses of pressure, temperature, and dew point on a
regional scale. A 25X 28 grid of mesh size 25 n mi was
placed over the portions of Texas, Oklahoma, New
Mexico, Colorado and Kansas shown in Fig. 12. In this
case, d=100 n mi and R/d=1.6. All analyses were
carried to 3 iterations. Interpolated values in the ex-
treme southwest corner of the grid were not obtainable

for lack of data. The subjectively determined surface
fronts and the major weather types are shown super-
imposed upon the machine analysis of pressure in Fig.
12 (again, winds are shown bui. were not used in the
analysis). A squall line with accompanying hail and a
few tornadoes was moving through central Oklahoma
at the time. Although the analy:is differs from the data
in several respects, the essential features of the pressure
distribution are represented.

Fig. 13 shows the interpolated pattern of surface
temperatures. One could not justify placing the polar
front at the warm edge of the large temperature gradient
since the other data show it to be slightly farther north.
But then, we are not attempting to position discontinu-
ities by this method.

The dew point analysis in Fig 14 shows two interest-
ing features aside from the gradicnts associated with the
fronts. The first is the relatively moist area in eastern
New Mexico associated with the shower area there. The
size of this system is of the order of 100 n mi in half
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F16. 13. Machine analysis of surface temperature for 0000 GCT 18 February 1961.

wavelength. This indicates the analysis scheme is ap-
plicable to mesoscale phenomenon provided one has
sufficient information concerning them.

The other interesting result is the region of low dew
points in the Big Bend region of Texas. The lowest re-
ported dew point was 9F at Wink, Texas (INK), yet the
analysis scheme extrapolated a 2F value in the Big Bend
region. This occurred because the only two stations af-
fecting that region were Wink and Midland, Texas
(MAFY), with the two lowest reported dew points. Dur-
ing the iteration process, the smoothed differences at the
points in the Big Bend were always negative, thus di-
minishing the first-guess value of 9.7F with each itera-
tion, However, we cannot dispose of the extrapolation
ability of the scheme merely on the basis that it happens
only when too few stations enter the calculation. The
65F value in the northeastern part of Oklahoma was the
result calculated on the basis of 8 stations, not one of
which reported a value greater than 62F. The fact that
the scheme does extrapolate is quite clear; the validity
of those extrapolations is still open to question.

Again, in Figs. 12, 13 and 14, only the general features
have been analyzed with any great detail. It is conceded
that a skilled analyst could get more detailout of the data
by placing more weight on each report. But to do so is
to say the reports are accurate and representative of the
smallest scale of disturbance visible in the distribution
of data. If that is in fact the case, then the same result
can be obtained objectively merely by carrying out the
iterations a greater number of times, or by using a
weight factor with slightly smaller radius of influence.
The convergence of the interpolated result to the de-
sired fit of the data is insured in either case.

4. Conclusions

In summary, we list the advantages of the convergent
weighted-averaging interpolation scheme described in
this paper.

1) It is based on the concept that the distribution of
an atmospheric parameter at any given time can
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F1c. 14. Machine analysis of surface dew points for 0000 GCT 18 February 1961.

be represented as the sum of an infinite number of
independent component waves.

2) The theoretical limit of the detail obtainable is
governed only by the density of-the data distri-
bution; the practical limit is additionally governed
by the accuracy of the input data and the purpose
of the analysis.

3) The scheme is computationally simple; therefore,
it is quickly executed and economical. (The three
maps shown in Fig. 12, 13 and 14 involving 57
stations on a 25X 28 grid were executed in 2 min
43 sec on the IBM 7090. The entire program in-
cluding input of program and data, execution, and
printing of results on the IBM 1401 was accom-
plished in about 10 min, two-thirds of which was
printing time.)

Although the scheme is not limited in theory to any
particular distribution of data, from a practical view-
point, applications should be made to reasonably uni-
form data distributions. This is mainly for economical

reasons. If the data spacings are fairly uniform so that
the actual distance between individual stations does not
deviate greatly from the average distance between the
entire group of stations, then a relatively small radius of
influence may be chosen for the weight factor and still
insure continuous, well-behaved results. Of course, the
smaller the radius of influence of the weight factor, the
faster the scheme converges to show the shorter
wavelengths.

On the other hand, should the scheme be applied to,
say, the data distribution found in an area including
North America and the northern Atlantic Ocean, the
radius of influence of the weight factor would have to
be very large to insure continuity of the results. Al-
though no tests were performed on such a distribution
of data, experience suggests tha: the resulting smooth-
ing of the shorter wavelength disturbances appearing in
the data over North America would be so great that
many tens of iterations would have to be performed to
regain those details. At present, extending the iterations
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much beyond ten does not appear to be economically
justified. Furthermore, it should be remembered that
while the shorter wavelength variations are being
amplified, the deviations caused by data errors at the
the more widely-spaced stations are being amplified to a
higher degree. For these reasons, direct application of
the scheme to obtain maximum detail in regions wherein
the data densities vary considerably is not recom-
mended.

A solution to the problem of applying the scheme to
non-uniform data distributions is beyond the scope of
this paper. However, two possibilities are suggested.
One might attempt to fill in the data distribution by
employment of nonconventional data as is currently
being done at the NMC. Or, one might analyze the
various regions of different data densities separately,
employing the proper weight factor and number of
iterations individually to each region, and then tie the
analyses together in some proper manner.

As for better representation of discontinuities between
air masses, again nonconventional data might be em-
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ployed. For surface analyses, the most promising source
of such data appears to be autographic records, con-
verting the time ordinate to a space ordinate.
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