
MODEL TYPE 

(Adapted from COMET online NWP modules) 

1. Introduction 

Grid point and spectral models are based on the same set of primitive equations. However, 
each type formulates and solves the equations differently. The differences in the basic 
mathematical formulations contribute to different characteristic errors in model guidance.  
 
The differences in the basic mathematical formulations lead to different methods for 
representing data. Grid point models represent data at discrete, fixed grid points, whereas 
spectral models use continuous wave functions. Different types and amounts of errors are 
introduced into the analyses and forecasts due to these differences in data representation.  
 
The characteristics of each model type along with the physical and dynamic 
approximations in the equations influence the type and scale of features that a model may 
be able to resolve.  
 
Model type does not necessarily impact the size of a model's domain. Global models have, 
however, historically been spectral because the wave functions and spherical harmonics 
in the spectral formulation operate over a spherical domain, a good match for global 
models. Global models are increasingly becoming grid point as computer resources 
increase.  
 
Model type has no direct impact on the choice of horizontal or vertical resolution. 
Theoretically, grid point and spectral models can be of any resolution, within the 
limitations of available computing power.  
 
The remainder of this section explores the characteristics and errors associated with grid 
point and spectral models in more detail. 

 

2. Grid Point Models 

2.1 Data Representation 

In the real atmosphere, temperature, pressure, wind, and moisture vary from location to 
location in a smooth, continuous way. In the graphic below, the continuous temperature 
field is depicted with the red contours, labeled in degrees Celsius. This is similar to how a 
spectral model would depict the field. 



 

Grid point models, however, perform their calculations on a fixed array of spatially 
disconnected grid points. The values at the grid points actually represent an area average 
over a grid box. The continuous temperature field, therefore, must be represented at each 
grid point as shown by the black numbers in the right panel. The temperature value at the 
grid point represents the grid box volume average. 

Grid point models actually represent the atmosphere in three-dimensional grid cubes, 
such as the one shown above. The temperature, pressure, and moisture (T, p, and q), 
shown in the center of the cube, represent the average conditions throughout the cube. 
Likewise, the east-west winds (u) and the north-south winds (v), located at the sides of 
the cube, represent the average of the wind components between the center of this cube 
and the adjacent cubes. Similarly, the vertical motion (w) is represented on the upper and 
lower faces of the cube. This arrangement of variables within and around the grid cube 
(called a staggered grid) has advantages when calculating derivatives. It is also physically 
intuitive; average thermodynamic properties inside the grid cube are represented at the 
center, while the winds on the faces are associated with fluxes into and out of the cube. 

 

2.2 Grid Point Models 

As discussed earlier, grid point models must use finite difference techniques to solve the 
forecast equations. In the simplified moisture forecast equation shown below, time 
changes in moisture at the center of a grid cube are caused by moisture advection across 
the cube. This, in turn, depends upon the changes in the moisture between the adjacent 



cubes and the average wind over the grid cube. The cube drawing graphically illustrates 
the conceptual moisture equation shown at the bottom. 

In the real atmosphere, advection often occurs at very small scales. For example, sea 
breezes have strong advection but are usually confined to distances of only a few tens of 
kilometers from shore. In our example, the grid points are spaced about 80 km apart. This 
lack of resolution introduces errors into the solution of the finite difference equation. The 
greater the distance between grid points, the less likely the model will be able to detect 
small-scale variations in the temperature and moisture fields. Deficiencies in the ability 
of the finite difference approximations to calculate gradients and higher order derivatives 
exactly are called truncation errors.  

The top finite difference equation can be converted into the form below it to explicitly 
show that we are solving for the future value of q. This value depends on its current value 
and the moisture difference between the grid points to the east and west. This is 
illustrated conceptually in the bottom equation. 

While finite difference equations appear complex, they are relatively simple and fast for a 
computer to evaluate. The grid point model structure is then used so the equations can be 
solved in a straightforward way for every grid point to produce a weather forecast. 
 
Note that this is the simplest possible finite difference approximation for the original 
equation. In practice, more complex expressions are used to increase the accuracy of the 
approximation. Typically, more grid points are also involved in the calculation of each 
term. 
 
Additionally, note that forecasters often calculate diagnostic quantities from model output 
as part of the forecasting process. These calculations will not necessarily be the same as 
those performed by the forecast model itself, since some variables have been averaged 
during model postprocessing. For instance, a complicated quantity such as potential 
vorticity, which requires an average of the gradients of winds and temperatures over 
several grid points, will appear to be smoother in the forecaster's diagnostic than was in 
fact the case in the forecast model itself. 

 

3. Spectral Model 

3.1 Data representation 

Spectral models represent the spatial variations of meteorological variables (such as 
geopotential heights) as a finite series of waves of differing wavelengths. 



In the introduction, we considered the structure of a conceptual two-wave model. Let's 
now look at a real data set. 

Consider the example of a hemispheric 500-hPa height field in the top portion of the 
graphic. If the height data are tabulated at 40°N latitude every 10 degrees of longitude 
(represented at each yellow dot on the chart), there are 36 points around the globe. It 
takes a minimum of five to seven points to reasonably represent a wave and, in this case, 
five or six waves can be defined with the data. The locations of the wave troughs are 
shown in the top part as solid red lines. 

When the data are plotted in the graph, the five wave troughs are definable by the blue 
dots but are unequally spaced. This indicates the presence of more than one wavelength 
of small-scale variations. In this case, the shorter waves represent the synoptic-scale 
features, while the longer waves represent planetary features. 

3.2 Use of Grid Point Methods in Spectral Models 

Spectral models use a combination of computational techniques, both spectral and grid 
point. Parts of the forecast equations use information about the forecast variables and 
their derivatives obtained entirely from the wave representation. Examples of these linear 
components include the important pressure gradient and Coriolis forces. Horizontal 
gradients are precisely calculated from the wave representation, avoiding errors 
associated with finite differencing.  

Other parts of the forecast equations must be calculated on grids, for example, 
precipitation and radiative processes, vertical advection, and parts of the wind advection 
terms. Grid point calculation of time tendencies for forecast variables resulting from 
physical processes introduces truncation errors. These errors are not removed when time 
tendencies are transformed back to wave representation and noise is introduced in the 
transformation process.  



 

While vertical advections are calculated using finite differencing, which generates 
truncation errors, horizontal advections, including wind advection, are also calculated on 
grids. However, special mathematical properties avoid the introduction of error for these 
terms. 

The more accurate computational techniques used in spectral models can be integrated 
over much longer periods than those used in grid point models without the generation of 
small-scale noise and provide smoother longer-range forecasts. This is one of the reasons 
why spectral models are most often used in global medium-range forecasting.  

3.3 Impacts of Grid Point Physics Calculations in 
Spectral Models 

For the grid point calculations, the values of the forecast variables must be transformed 
from spectral representation to grid points. The exact location and spacing of the grid 
points is determined by the model's "resolution" (maximum number of waves). The 
location and spacing of points is chosen to closely match the model's spectral resolution 
(maximum wave number) and most accurately calculate the non-linear dynamic terms. 
However, since model physics are also calculated on this grid, problems can result when 
the local effects of physics introduce errors during the transformation from grid point 
back to spectral representation. 

The graphic illustrates the process for calculations done on the grid in spectral models. 



 

Specific impacts of physics grid calculations include the following: 

• Grid calculations are subject to the limitations found in grid point models, for 
example, errors in the calculation of estimated gradients. 

• Errors in the time tendency terms for the forecast variables are carried back into 
spectral space and thus are not removed. 

• Since physical processes often do not result in wave-like time tendencies for the 
forecast variables, a distortion resulting from converting step-like features into 
waves occurs. A prime example is the time tendency of temperature from latent 
heat release due to precipitation processes. At the outer edges of a precipitation 
region, these fields tend to be more 'step-like' than 'wave-like.' When the 'step' in 
the latent heat release time tendency between grid points is transformed into a 
spectral representation, the distortion spreads through the model domain (though 
its amplitude becomes small away from the step location). Spectral models use 
filtering methods to minimize the effects of these distortions on the forecast 
variables. Additionally, postprocessing of data includes noise-reducing filtering of 
the physical fields. 

• Patterns produced by physical processes occurring at several adjacent grid points 
can cause minor oscillations in the spectral representation of the shorter 
wavelengths. The total effect is on the order of up to a few percent but can extend 
for a long distance on either side of the source of physical forcing. Thus, intense 
latent heating causes the model dynamics to respond to small amounts of heating 
in places where the physics actually has none. Because the oscillations are only a 
few percent, the effect at any one time is minimal. However, because this occurs 
throughout the model at different places at all times, it results in spurious 
background noise at small scales superimposed on the reliable part of the forecast. 



This effect can also be seen in the terrain elevation of the AVN model (see the 
Horizontal Resolution section). 

 

Now suppose that convective precipitation is triggered at a single physics grid point. The 
graphic illustrates how the effects are felt within the model. The red line represents the 
convective parameterization that causes a forcing of magnitude 1.0 at a single grid point 
on the physics grid in a spectral model. The yellow line is the spectral representation of 
this forcing plotted back onto the physics grid. Note that the associated warming retained 
in the spectral representation is reduced by around 33% at that location and its influence 
spread throughout a long distance in an unphysical oscillating pattern, as illustrated here. 
As the maximum number of waves in the spectral model is doubled, the oscillation fades 
faster so the distance scale would read about half of what is shown. This example is for a 
spectral model with a maximum wave number of 170 and a location along 40°N. 

3.4 Spectral: Truncation Effects 

What are the effects of truncation in a spectral model? Recall that in a grid point model, 
truncation error is associated with the finite difference approximations used to evaluate 
the derivatives of the model forecast equations. One of the nice features of the spectral 
formulation is that most horizontal derivatives are calculated directly from the waves and 
are therefore extremely accurate. 

This does not mean that spectral models have no truncation effects at all. The degree of 
truncation for a given spectral model is associated with the scale of the smallest wave 
represented by the model. A grid point model tries to include all scales but does a poor 
job of handling waves only a few grid points across. A spectral model represents all of 
the waves that it resolves perfectly but includes no information on smaller-scale waves. If 
the number of waves in the model is small (for example, T80), only larger features can be 
represented and smaller-scale features observed in the atmosphere will be entirely 
eliminated from the forecast model. Therefore, spectral models with limited numbers of 



waves can quickly depart from reality in situations involving rapid growth of initially 
small-scale features. 

 

Several types of wave orientation are possible in spectral models. Triangular (T, as in 
T170) configuration is the most common in operational models since it has roughly the 
same resolution in the zonal and meridional directions around the globe. 

 

4. Hydrostatic vs. Non-Hydrostatic Models 

4.1 Hydrostatic Models 

Most grid point models and all spectral models in the current operational NWP suites are 
hydrostatic. That is, they use the hydrostatic primitive equations, which assume a balance 
between the weight of the atmosphere and the vertical pressure gradient force. This 
means that no vertical accelerations are calculated explicitly.  

The hydrostatic assumption is valid for synoptic- and planetary-scale systems and for 
some mesoscale phenomena. A most notable exception is deep convection, where 
buoyancy becomes an important force.  

Hydrostatic models account for the effects of convection using statistical 
parameterizations approximating the larger-scale changes in temperature and moisture 
caused by non-hydrostatic processes.  



 

4.2 Non-Hydrostatic Models 

Currently, most non-hydrostatic models use grid point formulations. They are generally 
applied to forecast problems requiring very high horizontal resolution (from tens of 
meters to a few kilometers) and cover relatively small domains. 

Non-hydrostatic models can explicitly forecast the release of buoyancy in the atmosphere 
and its detailed effects on the development of deep convection. To accomplish this, non-
hydrostatic models must include an additional forecast equation that accounts for vertical 
accelerations and vertical motions directly, rather than determining the vertical motion 
diagnostically, solely from horizontal divergence. The basic form of the equation is 
similar to that of the horizontal wind forecast equation. Conceptually, it states 

 

In addition to changes in the vertical motion due to changes in orographic uplift and 
descent, changes in vertical motion from one time step to the next in a grid box are 
caused by 

• Advection bringing in air with a different vertical velocity 

• Pressure deviations from hydrostatic balance resulting from 

• Changes in horizontal convergence/divergence 

• Phenomena with non-hydrostatic pressure perturbations, such as 
thunderstorms and mountain waves 

• Buoyancy (B): Positive (negative) buoyancy generates a tendency toward 
upward (downward) motion. Positive buoyancy is caused by 

• Warm temperature anomalies in a grid box compared to its 
surroundings 

• Higher moisture content in a grid box compared to its surroundings 



• Downward drag caused by the weight of liquid or frozen cloud water and 
precipitation  

In addition, to account for vertical motions and buoyancy properly, non-hydrostatic 
models must include a great deal of detail about cloud and precipitation processes in their 
temperature and moisture forecast equations. Since hydrostatic models do not have a 
vertical motion forecast equation, none of these processes can directly affect the vertical 
motion in their predictions. 

One disadvantage of non-hydrostatic models is longer computation time. Since the 
models must finish running in time for forecasters to use model products, hydrostatic 
models are more advantageous unless non-hydrostatic phenomena need to be simulated 
or unless resolution finer than around 10 km is needed. 

Non-hydrostatic models run at very high resolution characteristically predict detailed 
mesoscale structure and associated forecast impacts on surrounding areas. For instance, a 
prediction of a mesoscale convective system will include a well-defined gust front, 
downstream thick anvil affecting surface temperature, and trailing mesohigh affecting 
winds for some distance from the active convection. These details will look like the kinds 
of features observed in real convective systems, but the forecast of convective initiation is 
subject to considerable error, possibly throwing off the whole forecast. Generally, 
mesoscale detail is most reliably predicted when forced by topography or coastlines. 
Otherwise, the detailed structure gives an idea of what to expect if the weather event 
causing it develops, but the timing and placement of that event may have considerable 
error. 

5. Summary 
 
GRID POINT MODELS 

• Characteristics 
o Data are represented on a fixed set of grid points 
o Resolution is a function of the grid point spacing 
o All calculations are performed at grid points 
o Finite difference approximations are used for solving the derivatives of the 

model's equations 
o Truncation error is introduced through finite difference approximations of 

the primitive equations 
o The degree of truncation error is a function of grid spacing and time-step 

interval  
• Disadvantages 

o Finite difference approximations of model equations introduce a 
significant amount of truncation error 

o Small-scale noise accumulates when equations are integrated for long 
periods 

o The magnitude of computational errors is generally more than in spectral 
models of comparable resolution 



o Boundary condition errors can propagate into regional models and affect 
forecast skill 

o Non-hydrostatic versions cover only very small domains and short 
forecast periods  

• Advantages 
o Can provide high horizontal resolution for regional and mesoscale 

applications 
o Do not need to transform physics calculations to and from gridded space 
o As the physics in operational models becomes more complex, grid point 

models are becoming computationally competitive with spectral models 
o Non-hydrostatic versions can explicitly forecast details of convection, 

given sufficient resolution and detail in the initial conditions  
 
SPECTRAL MODELS 

• Characteristics 
o Data are represented by wave functions 
o Resolution is a function of the number of waves used in the model 
o Model resolution is limited by the maximum number of waves 
o The linear quantities of the equations of motion can be calculated 

without introducing computational error 
o Grids are used to perform non-linear and physical calculations 
o Transformations occur between spectral and grid point space 
o Equations can be integrated for large time steps and long periods of 

time 
o Originally designed for global domains  

• Disadvantages 
o Transformations between spectral and grid point physics calculations 

introduce errors in the model solution 
o Generally not designed for higher resolution regional and mesoscale 

applications 
o Computational savings decrease as the physical realism of the model 

increases  
• Advantages 

o The magnitude of computational errors in dynamics calculations is 
generally less than in grid point models of comparable resolution 

o Can calculate the linear quantities of the equations of motion exactly 
o At horizontal resolutions typically required for global models (late 

1990s), require less computing resources than grid point models with 
equivalent horizontal resolution and physical processes  

 
HYDROSTATIC MODELS 

• Characteristics 
o Use the hydrostatic primitive equations, diagnosing vertical motion 

from predicted horizontal motions 
o Used for forecasting synoptic-scale phenomena, can forecast some 

mesoscale phenomena 



o Used in both spectral and grid point models (for instance, the 
AVN/MRF and Eta)  

• Disadvantages 
o Cannot predict vertical accelerations 
o Cannot predict details of small-scale processes associated with 

buoyancy  
• Advantages 

o Can run fast over limited-area domains, providing forecasts in time for 
operational use 

o The hydrostatic assumption is valid for many synoptic- and sub-
synoptic-scale phenomena  

 
NON-HYDROSTATIC MODELS 

o Characteristics 
o Use the non-hydrostatic primitive equations, directly forecasting 

vertical motion 
o Used for forecasting small-scale phenomena 
o Predict realistic-looking, detailed mesoscale structure and consistent 

impact on surrounding weather, resulting in either superior local 
forecasts or large errors  

• Disadvantages 
o Take longer to run than hydrostatic models with the same resolution 

and domain size 
o Used for limited-area applications, so they require boundary 

conditions (BCs) from another model; if the BCs lack the structure and 
resolution characteristic of fields developing inside the model domain, 
they may exert great influence on the forecast 

o May predict realistic-looking phenomena, but the timing and 
placement may be unreliable  

• Advantages 
o Calculate vertical motion explicitly 
o Explicitly predict release of buoyancy 
o Account for cloud and precipitation processes and their contribution to 

vertical motions 
o Capable of predicting convection and mountain waves  
 


