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Basic concepts

The basic idea of finite difference methods is to replace derivatives by finite
differences. Finite difference methods can be applied on a wide range of problems.
However, in order to produce efficient and reliable computational codes, several
fundamental questions have to be answered. We now introduce basic concepts
by a simple example.

Heat flow through a thin rod can be described by the one-dimensional heat equa-
tion

Uy = g, 0<z<1, t>0
u(z,0) = f(z) (1)
uw(0,t) = wu(l,t)=0

where \ > 0.

The solution of this problem is a function u = w(z,t), which represents the
temperature at the point x on the rod at the time ¢.

The rod has the initial temperature distribution f(z) at time ¢ = 0 and has
the constant temperature zero at both ends. The value of A depends on which
material the rod is made of.

For every value of ¢, u(z,t) is a function of z and shows the temperature distri-
bution at the time ¢. At the beginning, i.e. at ¢ = 0, we may have u(x,0) =
f(z) =sinmx + 0.3sin 2z — 0.1sin 3wx. See Figure 1.

u(x,0) = f(x)

0.8

u(x,t)
o
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Figure 1: The initial distribution of temperature.
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In Figure 2 we have drawn u(x,t) for t = 0, 0.1, 0.2, 0.3, 0.4, 0.5 for the same
initial function as above for the case when A = 0.5.

Figure 2: The solution w(z,t) for t = 0,0.1,0.2,0.3,0.4, and 0.5

In this special case (1) it is relatively easy to write down the solution u(z,t) as a
sum of an infinite series which can be computed. This has been done with when
producing Figure 2.

However, a PDE-problem can seldom be solved analytically. In most cases we
have to rely on numerical methods. Note: In this text we use the standard ab-
breviation PDE for partial differential equation.

In order to compute the numerical solution a grid is introduced. See Figure 3.

Figure 3: An example of a grid for numerical computations
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The following notations are used

Spatial step: h=1/N Valuesofz: z;=j3-h, j=0,1,2,...,N
Time step: k, Values of t:  t,=n-k, n 1

At the grid point (z;,t,) the solution has the value u(z;,t,) but this value is not
available so we approximate it with u7, i.e. we have

uj ~ u(rj,tn)

The main idea is, as has already been said, that partial derivatives are replaced by
finite differences and then the values of u} are computed from the finite difference
equations received.

In our example we replace the differential equation u; = Au,, by the difference
equation
u;-H'l —uj )\u}fﬁrl —2uj +uj_

k B h?

in each of the interior grid points. It is easy to see that the left hand side
approximates u;. The right hand side corresponds to Au,.

The values uj can now be computed by the following formulas

W= Ry — 2 ) =12, N =1
n=20,1,.

Uy = ui =0, n=201,... 2)

u? = f(x;), j=0,1,..., N.

The unknowns uf, i.e. the approximations to u(z,t) in the grid points, are
computed in the following order

1.1 1 2 2 2
U17U2,...,UN_1, Ul,uZ,,UN_l,

The order is from left to right and from bottom to top in the grid, as illustrated
in Figure 4.
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Figure 4: Order of computations

The difference method above is called Euler’s method or forward Fuler.

If we replace u; = Au,, in the grid points by

n+l . n n+l n+1 n+1
u; uj _ )\ujJrl PATY I o T
k h?

we get backward Euler. The complete formulas are

—Ak/h? -l (1 4+ 20k /R uf Tt — Ak /RPuit =u) j=1,2,...,N -1
n=1,2,

ug = ur =0, n=12... (3)

u?:f(xj, j=0,1,..., N.

Backward Euler is ¢mplicit. For every time step we have N — 1 unknowns,
wp™t uhy ™ wvt and N — 1 equations forming a tridiagonal linear system.
Thus, one tlme step with backward Euler is more expensive than one time step

with forward Euler.

If we combine forward Euler and backward Euler, i.e. taking the mean value of
these two, we get the Crank-Nicolson method.

—Ak/(2h%) - ufil + (L4 Ak/h?) - uf*t — Ak /(207) - u

— Nk /(2h2) - ulyy + (1= Mk /h2) - ul + Ak /(2h2) - ;71 j=1,2,... . N—1
n=12,.. (4)
USZU%:O, n:1727
u?:f(:(:j), j=0,1,.. N.
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This is also an implicit method and we have to solve a linear tridiagonal system
in every time step.

A finite difference scheme will give useful results only if the computational pro-
cess is stable, i.e. if “errors and perturbations are not amplified” during the
computational process. Stability is a fundamental concept in numerical analysis.
The forward Euler scheme of the one-dimensional heat equation is stable if h and
k are chosen such that they satisfy the condition A\k/h®> < 1/2. This is a hard
constraint on k, which has to be of the order h%2. As h must be fairly small to
give a good resolution, the time step k£ has to be very small in order to fulfill the
stability condition.

We now give some definitions and a fundamental theorem.

1. A PDE-problem consists of a PDE (or a system of PDE:s) and initial and /or
boundary conditions. The heat-flow problem (1) is a PDE-problem.

2. A well-posed PDE-problem fulfills the following conditions:

(a) It has a unique solution

(b) The solution “depends continuously” on initial and boundary data,
i.e. small perturbations in these data give only small perturbations in
the solution.

The heat flow problem (1) is a well-posed PDE-problem.

3. The local truncation error, ¥, of a PDE-problem is the difference between
the left and right hand members of the difference approximation when ap-
plied on the true solution wu(z,t) of the PDE-problem. The forward Euler
and backward Euler methods have local truncation error O(k) + O(h?).
Thus, the order of approxzimation is (1,2). The Crank-Nicolson method
uses symmetric approximations of the derivatives and has order of approx-
imation (2, 2).

4. A difference approximation is consistent to a PDE-problem if the local
truncation error ¥ tends to zero when the step lengths A and k& tend to
zero.

5. A difference approximation is convergent if the solutions of the finite dif-
ference equations u? — u(x;,t,). This definition is vague but can of course
be formulated in a strict mathematical way.

6. Lax-Richtmyer’s equivalence theorem: If we have a well-posed PDE-problem
and a consistent difference approximation then
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stability < convergence.

We need convergence (and in fact fast convergence). From Lax-Richtmyer’s
equivalence theorem we can conclude that examination of the stability is
the crucial part when examining convergence.

We present three different ideas of stability investigation.

1. Studies of perturbations
Let all initial and boundary values be zero. Then all v} = 0 if the PDE is
homogeneous. Now, let u] = € in one grid point and check what happens
for a certain combination of h and k. If u} is not increasing with n, then
the difference approximation is stable, otherwise unstable.

2. The Fourier method (the von Neumann method)
For every step in time (¢ = #,) the grid function u}} can be represented by
a Discrete Fourier Transform (DFT)

HEDY @™ where the integer w runs between — r and r
and where 2r +1 =N

This expression is inserted into the difference scheme and the growth of the
Fourier coefficients is studied. In particular for a one step method we can
define the amplification factor Q = amtt/an. If ‘Q‘ < 1 then the method is
stable. This inequality will give the stability condition on h and k. Strictly
speaking this method is applicable only for linear problems with constant
coefficients and periodic boundary conditions. However, it can be useful
also in more general cases giving necessary conditions for stability, e.g. if
the method is not stable for the case with periodic boundary conditions
then it is not stable for any other boundary conditions.

3. The energy method
Here the growth of the solution is studied. The norm at time level n is
defined by

n2_N n2

a2 = 3 a5
__Oj .
J:

Then the norms ||u"™||* and ||u"||? are compared in order to find out if the

perturbations will grow or not.

m@g@@ sEraelt 6 Institutionen for teknisk databehandling
UPPSALA UNIVERSITET




