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Assignment 1: A one-dimensional heat equation

Subtask 1

a) Use the forward Euler scheme to solve the one-dimensional heat problem


ut = λuxx 0 < x < 1, t > 0
u(x, 0) = f(x)
u(0, t) = u(1, t) = 0

(1)

where
f(x) = sin πx + 0.3 sin 2πx − 0.1 sin 3πx

λ = 0.1, h = 0.1, k = 0.05

Compute and plot the values un
j for n = 0, 10, 20, 30, 40, 50.

b) The same problem as in a) but with k = 0.1. Make comments on the
results.

c) Solve the same problem as in a) but with λ = 0.05. Choose k as large as
possible but keep λk/h2 ≤ 1/2. Plot the results and compare them with
a). How does reduction in the value of the parameter λ affect the results?
Make experiments with different values of λ.

d) Solve the same problem as in a) with the backward Euler method. This
gives a system of equations with N − 1 unknowns at every time step. The
resulting system is a tridiagonal system and can be solved with MATLAB
routines. Begin by considering the coefficient matrix. Verify by experiments
the unconditional stability of the scheme.

e) Solve the same problem as in d) but with the Crank–Nicolson method.

Subtask 2

Our simple model problem (1) can be generalized in different ways.

a) Change the boundary values to

u(0, t) = g1(t) and u(1, t) = g2(t)

where g1 and g2 are chosen in a proper way and compute the solution with
the forward Euler scheme.
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b) Let λ be a function of x and/ or t. Try with λ = ex, λ = et, λ = e−x+t

and others values in combination with backward Euler. Are there any
computational complications in comparison with the case when λ constant?

c) Let λ = 2/(2+u2(x, t)) i.e. let λ depend on the temperature u and compute
the solution with the forward Euler method.

d) Try with λ = −1. What happens?

e) Try with ut = λuxx + aux + bu + f and replace ux with (un
j+1 − un

j−1)/2h in
forward Euler and similarly for backward Euler and Crank–Nicolson.

Assignment 2: A two-dimensional heat equation

Now we have the equation ut = λ1uxx + λ2uyy in the region 0 < x, y < 1, t > 0.
The constants λ1 and λ2 are both positive.

Suppose we have the initial temperature

u(x, y, 0) = f(x, y), e.g. = sin πx sin πy

and that u(x, y, t) = 0 on the boundary.

a) Define forward Euler, implement it and compute the solution for some com-
bination of hx, hy, and k. Try to find a stability condition for λ1 = λ2.

b) Implement the backward Euler method. How many unknowns do we get
on each time level?

c) Try the ADI-method (ADI=Alternating Direction Implicit) given by

u
n+1/2
ij − un

ij

k/2
= λ1

u
n+1/2
i+1,j − 2u

n+1/2
ij + u

n+1/2
i−1,j

h2
x

+ λ2

un
i,j+1 − 2un

ij + un
i,j−1

h2
y

un+1
ij − u

n+1/2
ij

k/2
= λ1

u
n+1/2
i+1,j − 2u

n+1/2
ij + u

n+1/2
i−1,j

h2
x

+ λ2

un+1
i,j+1 − 2un+1

ij + un+1
i,j−1

h2
y

Here we have used an extra time level with time index n + 1/2. Instead of
solving one very large linear system we solve a number of smaller systems.
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Assignment 3: A hyperbolic problem

Subtask 1

We study the PDE-problem


ut = ux 0 < x < 1, 0 < t
u(x, 0) = f(x) = sin 2πx
u(x, t) = u(x + 1, t)

which has the solution u(x, t) = f(x + t)

a) Use the “leap-frog scheme”

un+1
j − un−1

j

2k
=

un
j+1 − un

j−1

2h

and try the following combinations of h and k

1) h = 0.1, k = 0.049
2) h = 0.1, k = 0.098
3) h = 0.05, k = 0.0245
4) h = 0.05, k = 0.049
5) h = 0.1, k = 0.1

Use the exact solution for t = k. Compare the computed solution with
the correct solution. Try to find how the quality depends on the value of
λ = k/h.

In cases of instability, on which time level is it first observed? For which x?
Make observations of the propagation of perturbations.

Subtask 2

a) We change the boundary condition to u(1, t) = 0. The PDE-problem is still
well posed and has the solution

u(x, t) =

{
f(x + t) for x + t ≤ 1,

0 otherwise.

But the leap-frog scheme needs a boundary condition also on the left.
Choose simple extrapolation un+1

0 = 2un
1 − un−1

2 . Which effects does this
“numerical boundary condition” have?

3 Institutionen för teknisk databehandling
UPPSALA UNIVERSITET



b) To reduce the perturbations we change the difference scheme to

un+1
j = un−1

j + 2k
un

j+1 − un
j−1

2h
− δ(un−1

j+2 − 4un−1
j+1 + 6un−1

j − 4un−1
j−1 + un−1

j−2 )

This is “leap-frog with a dissipative term” and it can be applied in x2, x3, . . . ,
xN−2. In x1 and xN−1 the simple leap-frog scheme is used. Use h = 0.05
and k = 0.04 and choose different values of δ between 0 and 0.2 and try to
find an optimal value of δ.

Assignment 4: A gas flow problem

One dimensional gas flow can be described by the hyperbolic system


 ρ

m
e




t

+


 m

ρu2 + p
(e + p)u




x

=


 0

0
0


 . (2)

Here ρ is the density of the gas, m the momentum, and e the total energy. The
velocity is u = m/ρ. Under the assumption that we have an ideal gas, the pressure
is given by

p = 0.4(e − 1

2
m2/ρ).

The system can be written in the form Ut +F (U)x = 0, where the vectors U and
F (U) can be identified in (2).

The initial state is

U(0, x) =


 0.445

0.311
8.928


 for x < 0 and U(0, x) =


 0.5

0
1.4275


 for x > 0

Subtask 1

Implement and solve the problem in the interval −2 < x < 2 up to t = 0.6.
Use the “leap-frog with a dissipative term” and approximately 400 grid points
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in space. Try different values of δ to find a solution with as few oscillations as
possible. To obtain stability ∆t should be chosen such that ∆t ≤ 0.2∆x.

In Figure 1 the solution, at a time t > 0 (not t = 0.6), is shown. Note that such
a good resolution cannot be obtained with the methods used in this assignment.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4
Density

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4
Pressure

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Velocity

Figure 1: The solution of the gas flow example (2)

Subtask 2

Explain how the upper limit of ∆t is found. The limit has something to do with
the spectral radius of the Jacobian, ∂F/∂U , which is around 4.7.

Assignment 5: An elliptic problem

Subtask 1

A simple elliptic PDE-problem is

{
uxx + uyy = f(x, y) 0 < x, y < 1
u(x, y) = g(x, y) on the boundary

This is the Dirichlet problem for Poisson’s equation. The step lengths are ∆x =
∆y = 1/N and the most natural difference approximation is the five-point formula

ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2
= f(xi, yj)
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When this is applied we get a linear system which is sparse, i.e. most of the
elements of the coefficient matrix are zeros.

a) First, find the linear system for N = 4 and then do the same for a general
value of N .

How is the coefficient matrix changed if ∆x �= ∆y?

b) Compute the solution and plot it for N = 10, 20, 30. Make own choices of
f(x, y) and g(x, y).

Assignment 6: Air Quality Modeling and the Advection
Diffusion Equation I

Introduction

An important area in modern Environmental Engineering is the study of various
air pollutants. The concentrations of these pollutants are described by air quality
models which are often formulated as partial differential equations. With the use
of models the hope is to predict how peak concentrations will change in response
to predefined changes in the source of pollution.

Consider now the concentration u(x, y, z, t) of a gaseous compound. If we have
knowledge of the concentration at time t = 0, we would like to be able to predict
future concentrations. Let, for instance, u be the concentration of a noxious gas
formed at an industrial plant. At t = 0 a concentrated cloud of the pollutant is
released into the air surrounding the plant. Of great importance is the knowledge
of how concentrated the gas will be when it reaches the nearby residential areas.

To model the air quality (i.e. the concentration of u) we use the continuity
equation,

∂u

∂t
= −∇ · J (3)

where ∇ is the nabla operator, ∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

). Equation (3) states that the

time development of u is related to the flux J (amount per area and time) of the
gas. The total flux is made up of two terms. First we have the dispersive effect
of diffusion, given by Fick’s first law, Jdiffusion = −D · ∇u, where D denotes the
diffusion constant. In addition to diffusion the gas is transported by the wind
through a process called advection. This leads to a flux, Jadvection = v ·u, where v

6 Institutionen för teknisk databehandling
UPPSALA UNIVERSITET



is the wind vector. If we now combine the expressions for the flux with equation
(3) we get the advection diffusion equation,

∂u

∂t
= D · ∆u −∇ · (v · u) (4)

where ∆ is the Laplace operator, ∆u = ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 . In some special cases

equation (4) can be solved analytically. However, in most cases, we have to rely
on numerical methods.

Task 1

To start off gently we can simplify equation (4) in the following way. First we
leave out the diffusion term (i.e. D = 0). If in addition to this we only let the
wind blow in the x-direction (v = (v, 0, 0)) we get the following equation:

∂u

∂t
= − ∂

∂x
(v · u)

which can be expanded into

∂u

∂t
= −v

∂u

∂x
− u

∂v

∂x
(5)

Finally, if v is the same for all x, then equation (5) turns into

∂u

∂t
= −v

∂u

∂x
(6)

To solve equation (6) numerically the following explicit finite difference scheme 1

can be used:

un+1
j − un

j

k
= −v

un
j − un

j−1

h

Use the scheme above and the initial condition

u0(x) =

{
5 |x| < 1
0 otherwise

to solve (6) for the area defined by{
|x| ≤ 15
0 < t ≤ 4

1Standard notation is used in all the schemes. This means that j and n are indices for space
and time, respectively, h and k are step lengths for space and time, respectively.
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Let v = 1 and choose h = 0.1 and k = 0.05 for the step lengths.

Plot the concentration profile at t = 4 together (in the same figure as shown in
figure (2 B)) with the profiles you obtain in Task 2 and 3.

Explain the concentration profile at t = 4. Is this what you would expect with
only advection with a constant wind velocity? The exact solution of 6 is u(x, t) =
u0(x − vt) (shown in figure(2 A) . Does your numerical solution differ from it?

Note that the problem above (equation (6) together with the initial condition)
is not a well-posed problem. To make it a well-posed problem we have to add
boundary conditions. Here, and in the other tasks we will use natural constraints
assuming that the solution is constant outside a predefined interval. If we solve
the problem using a large enough region, like |x| ≤ 15, this won’t lead to any
complications.

Figure 2: A The exact solution to equation (6). B Numerical solutions to Task
1, 2 and 3.

Task 2

If we now complicate the situation given in Task 1 somewhat by letting the
wind (still just blowing in the x-direction) be a function of x but still ignoring
diffusion, then our concentration u can be described by equation (5), given above.
An explicit scheme for this problem is:

un+1
j − un

j

k
= −vj

un
j − un

j−1

h
− un

j

vj − vj−1

h
(7)

a) Deduce the order of accuracy for the scheme (7).
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b) Use the same step lengths, initial condition and region as in Task 1 to solve
equation (5) with the scheme (7). Let the wind velocity be defined as:

v(x) =

{
x2/(1 + x2) x > 0
0 otherwise

Plot the concentration profile at t = 4 together (in the same figure) with the
profiles of Task 1 and 3.

Task 3

If we enter diffusion into equation (6), we obtain the following equation

∂u

∂t
= D

∂2u

∂x2
− v

∂u

∂x
(8)

which can be solved using the scheme,

un+1
j − un

j

k
= D

un
j+1 − 2un

j + un
j−1

h2
− v

un
j − un

j−1

h
(9)

a) Solve equation (8), using the same initial condition, region and the same wind
as in Task 1. Use h = 0.1, k = 0.004 and D = 1.

Plot the concentration profile at t = 4 together (in the same figure) with the
profiles you obtained in Task 2 and 3. Explain the differences between the three
profiles.

b) The stability conditions for the finite difference schemes can be examined
using, for example, the Fourier method. The stability condition for the scheme
(9) is

k

h2
(2D + vh) ≤ 1

The choice of step lengths in Task 3a therefore gives a stable difference scheme.
Now, solve the same problem as in Task 3a but use the step lengths (h = 0.1,
k = 1/210) and (h = 0.1, k = 1/209). With these choices of step-lengths it is
not possible to find the solution at exactly t = 4, however, you can still study
the phenomenon of unstable difference schemes. Explain the results.
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Assignment 7: Air Quality Modeling and the Advection
Diffusion Equation II

Task 1

In assignment 6 we have only looked at cases where the concentration depends
on one space variable and time, u = u(x, t). Let’s now study what happens if
the wind vector has two components, v = (v1, v2, 0). If we set D = 0 the general
advection diffusion equation (4) turns into:

∂u

∂t
= −v1

∂u

∂x
− v2

∂u

∂y
− u

∂v1

∂x
− u

∂v2

∂y
(10)

Equation (10) can be solved using a generalization of the scheme (7):

un+1(i, j) − un(i, j)

k
= − v1(i, j)

un(i, j) − un(i − 1, j)

h

− v2(i, j)
un(i, j) − un(i, j − 1)

h

− un(i, j)
v1(i, j) − v1(i − 1, j)

h

− un(i, j)
v2(i, j) − v2(i, j − 1)

h

(11)

Use this scheme to solve (10) with the following specifications. Solve for |x| ≤ 30,
|y| ≤ 30, t ≤ 15, step lengths h = 0.5, k = 0.1 and the initial condition:

u0(x, y) =

{
50(1 + cos πr

4
) r ≤ 4

0 otherwise

where {
r2 = (x − x0)

2 + (y − y0)
2

(x0, y0) = (0,−20)

The wind is defined by{
R =

√
x2 + y2

v = (−(y + 0.5x)/R, (x − 0.5y)/R)

Make plots of the solution at t = 0, t = 5, t = 10, and t = 15. Make a velocity
plot of the wind, i.e. plot arrows indicating the wind direction (use quiver in
matlab). Try to explain your results. Change the step size to k = 0.01. What
happens?
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Task 2

Add the dissipation term with D = 1.0. Approximate the Laplace operator
with second order centered differences. Re-do the calculations with h = 0.5 and
k = 0.01. Compare with task 1 and explain both the physical and the numerical
behavior.

Task 3

Suggest a better numerical method for this problem and motivate your choice,
(possibly by showing that it works better).
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