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Abstract 

A new cloud microphysical parameterization is described. Features of this new scheme include: 
the use of generalized gamma distributions as the basis function for all hydrometeor species; the use 
of a heat budget equation for hydrometeor classes, allowing heat storage and mixed phase hydrome- 
tears; partitioning hydrometeors into seven classes (including separate graupel and hail categories) ; 
the use of stochastic collection rather than continuous accretion approximations and extension of the 
ice nucleation scheme to include homogeneous nucleation of ice from haze particles and cloud 
droplets. 

The versatility and credibility of the new scheme is explored, using sensitivity experiments for a 
simple two-dimensional convective cloud simulation. 

1. Introduction 

In this paper we describe a new cloud microphysics parameterization that has been 
introduced into the Regional Atmospheric Modeling System (RAMS) developed at Colo- 
rado State University. It is appropriate that we present the newest version of the cloud 
microphysics scheme developed under the direction of William R. Cotton (hereafter referred 
to as WRC) in this Helmut Weickmann memorial volume. The first microphysics scheme 
developed by WRC was supported by ESSA Contract No. E22- 10348 (N) (see Lavoie et 
al., 1970; later published in Cotton, 1972a, b) for investigations of lake effect storms. 
Helmut, who served as the program manager of the project, was particularly interested in 
that earlier scheme and often discussed its physical basis and approximations in detail with 
WRC. That early scheme subdivided hydrometeor species into four components, cloud 
droplets, raindrops, frozen hydrometeors and pristine ice crystals. Pristine ice crystals had 
a mono-disperse size-spectrum but, in addition to crystal mass, the bulk geometry of the 
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crystals (u-axis and c-axis) was predicted and stored. Like almost all microphysics para- 
meterizations of the time (Weinstein and Davis, 1968; Simpson and Wiggert, 1969; Wein- 
stein, 1970; Wisner et al., 1972; Koenig, 1977; Orville and Kopp, 1977), the first scheme 
followed the lead of Kessler ( 1969), in which the size-spectra of the other hydrometeor 
classes was assumed to be Marshall and Palmer ( 1948) with the intercept parameter N, 
specified by the user. Also, all collection equations were approximated by continuous 
collection solutions. 

Later Cotton et al. (1982, 1986) introduced a scheme in the predecessor numerical 
prediction cloud model to RAMS, that included an ice crystal class that was greatly sim- 
plified over the older scheme since it was too computationally expensive to keep track of 
ice crystal geometry. Moreover, the original Marshall and Palmer exponential size-spectra 
used by Kessler was modified somewhat to include a user-specified constant slope given 
by a constant characteristic diameter rather than a constant N,. 

Almost all the earlier microphysics parameterization schemes involved prediction of a 
single moment of the hydrometeor size-spectra, namely the mass mixing ratio of the species 
which is proportional to the third moment. There is a trend in recent years to extend those 
earlier bulk microphysical schemes to include predictions on an additional moment of the 
spectrum, namely the concentration of the species (e.g., Nickerson et al., 1978, Nickerson 
et al., 1986; Ziegler, 1985; Ferrier, 1993; Wang and Chang, 1993). In this paper, which we 
shall call Part I, we describe the new scheme in RAMS that includes several new features. 
These include the use of a generalized gamma size-spectrum, rather than only a Marshall- 
Palmer spectrum, the introduction of ice-liquid mixed phase hydrometeor categories, a 
double moment spectrum for ice crystals, and new heterogeneous and homogeneous nucle- 
ation parameterizations. In addition, approximate solutions to the stochastic collection 
equation based on Verlinde et al. (1990) are used rather than the continuous accretion 
approximation. Furthermore, thermal equilibrium is not assumed for the rain, graupel and 
hail hydrometeor classes. In Meyers et al. ( 1994; hereafter referred to Part II) we describe 
the extension of the scheme to prediction on hydrometeor concentration, in addition to mass 
mixing ratio. 

2. Model formulation 

2. I. Categories of water 

Water is categorized in up to eight forms: vapor, cloud droplets, rain, pristine ice, snow, 
aggregates, graupel and hail. Cloud droplets and rain are liquid water, but may be super- 
cooled. Pristine ice, snow and aggregates are assumed to be completely frozen, while graupel 
and hail are mixed-phase categories, capable of consisting of ice only or a mixture of ice 
and liquid. 

Cloud droplets are assumed small enough to not fall, while all other categories do fall. 
Cloud droplets and pristine ice are the only categories to nucleate from vapor. All other 
categories form from existing hydrometeors, but once formed, may also grow by vapor 
deposition. Pristine ice may also continue its growth by vapor deposition, and is not per- 
mitted to grow by any other process. The definition of the pristine ice category is restricted 
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to relatively small crystals, and larger pristine ice crystals are categorized as snow. The 
snow category is defined here as consisting of relatively large ice crystals which have grown 
by vapor deposition and riming. Together, the pristine ice and snow categories allow a bi- 
modal representation of ice crystals. Aggregates are defined as ice particles that have formed 
by collision and coalescence of pristine ice, snow, and/or other aggregates. Like snow, 
aggregates are allowed to retain their identity with moderate amounts of riming. Pristine 
ice, snow and aggregates are all low-density ice particles, having relatively low mass and 
fall speed for their diameters. Graupel is an intermediate density hydrometeor. It is assumed 
to be approximately spherical in shape, and to be formed by moderate to heavy riming and/ 
or partial melting of pristine ice, snow or aggregates. Graupel is allowed to carry up to only 
a low percentage of liquid. If the percentage becomes larger, by either melting or riming, a 
graupel particle is re-categorized as hail. Hail is a high-density hydrometeor, considered 
spherical in shape. It is assumed to be formed by freezing of rain drops or by riming or 
partial melting of graupel. Hail is allowed to carry any fraction of liquid water up to, but 
not including, lOO%, except that all but small hail will shed excessive liquid. 

Note that these definitions of graupel and hail emphasize their composition and density 
more than their method of formation. For example, a snowflake or aggregate undergoing 
gradual melting in this scheme first converts to graupel, then to hail, and finally to rain, 
although hail is usually thought of as forming from riming of supercooled water onto an ice 
nucleus or from freezing of supercooled rain. One purpose of this approach is to more 
accurately model a hydrometeor’s fall velocity and consequent rates of ventilation and 
collision as it undergoes transformation to different densities. As will be discussed, fall 
velocity is a function of diameter and category only, so changing categories is the means 
for changing the velocity of a given diameter particle. Another purpose, regarding transfer- 
ring mostly melted ice to the hail category, is that if re-freezing happens to occur, the result 
should be hail rather than low-density ice or supercooled rain. Other criteria for categori- 
zation are possible, including a size distinction between graupel and hail following some 
definitions of the two. These are being explored elsewhere with the new model, but are not 
a part of the present work. 

2.2. Hydrometeor size distributions and power laws 

Hydrometeors in each category are assumed to conform to a generalized gamma distri- 
bution described by Flatau et al. ( 1989) and Verlinde et al. ( 1990), given by 

(1) 

where hydrometeor diameter D may range from zero to infinity, and r( Y) is a normalization 
constant making the integral over D from zero to infinity off,, equal to 1. Other symbols 
are defined in Table 1. The number density distribution is described by 

n(D) =Nfsam(D)> (2) 

where N, is the total concentration of the category. The shape parameter v may be any real 
number greater than or equal to 1, and controls the relative amount of smaller vs. larger 
hydrometeors in the distribution. For example, when v = 1, Eq. ( 1) reduces to the expo- 
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Table 1 
Nomenclature 

(dN,lWv,t,, 

P 
Pm 
P 

4 

:,a, 

Q’, Q”” 
Q’ 
A Qv.d. A Qtx, 

quantity defined by Eq. ( 3 1) (dimensionless) 
quantity defined by FZq. (34) (m s kg-‘) 
specific heats of ice and liquid water (J kg- ’ K- ‘) 
specific heat of air at constant pressure (J kg-’ K-‘) 
diameter of an individual hydrometeor (m) 
diameter that separates the pristine ice and snow categories (m) 
diameter of hydrometeor whose mass is m (m) 
mean diameter of a category (m) 
modal diameter of a category (m) 
characteristic diameter of modified gamma distribution (m) 
saturation vapor pressure over liquid (Pa) 
collection efficiency (dimensionless) 
probability density function for modified gamma distribution, or fraction of 
hydrometeors of a given category per unit increment of diameter D occurring at 

D (m-l) 
fraction of haze particles which freeze homogeneously in 1 s (dimensionless) 
ventilation coefficient for a hydrometeor (dimensionless) 
function giving the fraction of pristine ice crystal concentration sublimated in a 
timestep (dimensionless) 
mean value of ( DfRe) integrated over a category size distribution (m) 
fall speed adjustment dependent on air density (dimensionless) 
expressions defined in Eqs. (55-57) for contact nucleation 
habit of pristine ice (dimensionless) 
fractional amounts of ice in graupel and hail categories (dimensionless) 
collection table value (kg m3 s - ’ ) 
Knudson number (dimensionless) 
latent heats of evaporation, sublimation, and melting (J kg- ‘) 
mass of an individual hydrometeor (kg) 
mean value of m over a category size distribution (kg) 
rn, is liquid water mass shed from a hail particle containing ice mass mi (kg) 
initial mass of nucleated ice crystal (kg) 
number of hydrometeors of a given category per cubic meter per unit increment 
of diameter D occurring at D (m-“) 
concentration of ice nuclei available for contact freezing (mm ‘) 
concentration of haze particles (m-‘) 
number concentration of hydrometeors of a given category ( rnm3) 
cloud droplet concentration (m-‘) 
Marshall - Palmer y-intercept concentration of a category ( mm4) 
pristine ice concentration production due to deposition nucleation, homogeneous 
freezing of cloud droplets, and homogeneous freezing of haze particles (m-3) 
rate of pristine ice concentration production due to contact nucleation by 
diffusiophoresis, thermophoresis, and Brownian motion ( mm3 s- ’ ) 
atmospheric pressure (Pa) 
reference pressure = 10’ Pa 
general moment of gamma distribution (dimensionless) 
reference internal energy per unit mass of a category (J kg-‘) 
source term for Q (J kg-’ SC’) 
energy per unit condensate mass required to evaporate and/or sublimate at 
constant temperature all condensate mass (J kg- ’ ) 
valuesofQattimestandt+At(Jkg-‘) 
temporary value of Q before heat and vapor diffusion (J kg- ‘) 
heating of category over a timestep due to vapor and heat diffusion (J m- ‘) 
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rvsh 

rvso 

Ar,, Ar, 

Ar,, 

R, R, 
s 
I, At 
T,. T, 
TC 
TC, 
T(Px) 
To 
VI - 

Vk 
x. Y 

mass mixing ratio of a category (kg kg-‘) 
thesumofr,andr,(kgkg-‘) 
saturation mixing ratios over liquid and ice at air temperature T, (kg kg- ’ ) 
mass mixing ratios of water vapor, cloud water, rain, pristine ice, snow, 
aggregates, graupel, hail, and the total over all forms of water (kg kg-‘) 
saturation mixing ratio at hydrometeor surface (kg kg-‘) 
reference value of saturation mixing ratio (kg kg- ‘) 
temporary value of r before heat and vapor diffusion (kg kg-‘) 
mixing ratio contributions of ice and liquid water to coahescing hydrometeors 

(kg kg-‘) 
mixing ratio of ice returned to ice category from coallesced hydrometeors (kg 

kg-‘) 
mixing ratio of ice transferred to new category following melting (kg kg- ’ ) 
change of category mixing ratio over a timestep due to vapor diffusion (kg 

kg-‘) 
gas constants for dry air and water vapor (J kg-’ Km’) 
hydrometeor shape parameter (dimensionless) 
current time, model time increment (s) 
air temperature in (K) and (“C) 
mean temperature of a category ( “C) 
cloud droplet temperature (“C) 
the Pth moment of the incomplete gamma function (dimensionless) 
reference temperature (“C) 
terminal velocity of an individual hydrometeor (m s - ’ ) 
mean value of V, over a category size distribution (m ss’) 
kinematic viscosity of air ( mZ s- ’ ) 
subscripts identifying colliding hydrometeor categories 
absolute heights of top and bottom of a parcel of precipitation before and after 
falling for a timestep (m) 
coefficient in mass power law formula (kg m-sm) 
coefficient in terminal velocity power law formula (ms-’ m-&) 
exponent in mass power law formula (dimensionless) 
exponent in terminal velocity power law formula (dimensionless) 
complete gamma function of v (dimensionless) 
ice-liquid potential temperature (K) 
thermal conductivities of air and aerosol (J m- I s- I) 
Marshall-Palmer slope parameter (mm ’ ) 
dynamic viscosity of ah (kg mm’ s-‘) 
gamma distribution shape parameter (dimensionless) 
quantity defined in Eq. (75) and used for autoconversion of cloud droplets to 
ram 
3.14159 
densities of a hydrometeor and dry air (kg m- ’ ) 
vapor density in atmosphere (kg m-3) 
saturation vapor density at hydrometeor surface (kg m-3) 
density of liquid water (kg m-‘) 
quantity defined in Eq. (76) and used for autoconversion of cloud droplets to 
rain 
vapor diffusivity and aerosol diffusivity in air (m* s- ‘) 
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nential or Marshall-Palmer distribution in which the modal diameter (the diameter where 
fgam has a maximum value) is zero, while as Y increases, the modal diameter increases 
monotonically. The characteristic diameter D, is used to nondimensionalize D, and serves 
as a diameter scaling factor for the distribution. It is related to the modal diameter by 

D mode= (y- l>Dn 

and to the mean diameter by 

D mm 
r’v+l)D =vD W&n(DW= r(v) n n. 

0 

In general, any moment P of the distribution is given by 

(5) 

The facility of Eq. (5) in providing an analytic solution to the integral is maintained for 
any property of the hydrometeor species which is expressed as a power of D. Two properties 
for which integrals are required are the mass m and the terminal velocity u,. Expressing 
them as power law formulas 

m = a,,,Dh” (6) 

u, = qtDp” (7) 

their concentration-normalized integrals become 

(8) 

and 

Fig. 1 is a plot of a family of gamma distributions, given by Eq. ( 1)) where D, is adjusted 
according to Eq. (8) such that all distributions have the same value of Z, and /3,,* = 3 is 
used. The abscissa is the hydrometeor diameter divided by the diameter D= of the particle 
having mass Z. Integer values of v from 1 to 10 are used. As v increases, the distribution 
becomes progressively more peaked at D = &. 

Hydrometeor density is related to mass by 

Multiplying Eq. (8) by N, and dividing by air density pn gives an expression for the mass 
mixing ratio of the hydrometeor category 
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Fig. 1. Set of gamma distribution curves for integer values of the shape parameter ZJ from I to 10. The peaks of 
the curves shift progressively to the right as Y increases. Ordinate is the value offgam given by Fq ( 1). Abscissa 
is hydrometeor diameter D, where 0; is held fixed at 1 for all curves, and p.* is set to 3. 

In RAMS, the standard practice is to select the five parameters Y, (Y,, &, cr,,,, and & for 
each category based on available empirical data, often with guidance from knowing the 
type of system being simulated, and to hold these parameters fixed in time and space for 
the duration of the simulation. (For the pristine ice and snow categories, multiple sets of 
these parameters are available, each describing a different crystal habit, and the option exists 
to switch during a simulation from one habit to another both spatially and temporally based 
on a pre-determined algorithm.) Once these parameters are specified, there remain two free 
parameters from the set (r, N,, D,) to be determined for each category, the third parameter 
being obtained from the other two and Eq. ( 11) . The spatial and temporal dependence of 
the two free parameters are what define the model solution for each category. In the next 
section, we discuss the equations governing the two free parameters. 

2.3. Microphysical parameterization within the RAMS framework 

With the exception of cloud water and vapor, the mixing ratios of all water categories 
are governed by conservation equations of the form 

z = ADV( r) + TURB ( r) + SOURCE( r) + SEDIM( r) ( 12) 



36 R.L. W&o et al. /Atmospheric Research 38 (1995) 2942 

where r= [r,, r,,, r,, r,, rg, r,, r,] represents, respectively, the mixing ratios of rain, pristine 
ice, snow, aggregates, graupel and hail, plus an additional “total water” category consisting 
of the sum of the mixing ratios of all categories including cloud water and vapor (r, and 
r,) . ADV ( r-) and TURB ( r) represent advective and turbulent transport of r by the resolved 
and subgrid velocities in the model. SOURCE (r) represents source (and sink) terms for 
the categories which consist of all types of conversion of water substance from one category 
to another. SEDIM ( r) represents local losses and gains of mixing ratio due to gravitational 
sedimentation. Eq. ( 12) is integrated forward in time from initial values (except for r,, 
initial values are usually zero) to obtain prognostic mixing ratios for each model grid cell 
and each timestep. 

The sum of the mixing ratios of cloud and vapor is determined as a difference of the 
prognostic mixing ratios: 

r c+v=rt-(r,+rp+rs+ra+rg+rh). (13) 

The cloud mixing ratio r, is then diagnosed as the amount, if any, by which the sum exceeds 
the saturation mixing ratio r,y with respect to liquid water: 

r,=max[O, r,+,-rdl (14) 

while r, is diagnosed from 

rv=rc+v-rc. (13 

Vapor mixing ratio r, is thus not allowed to exceed I,/}. Saturation mixing ratio r,e is 
given by 

0.622e,y 
r,f=- 

P-v 
(16) 

where p is the atmospheric pressure and e,e is the saturation vapor pressure evaluated from 
an 8th order polynomial in air temperature T, (Flatau et al., 1992). T, is itself diagnosed 
from the prognostic ice-liquid potential temperature t$/ and from the mixing ratios of all 
liquid and ice categories by the equation (Tripoli and Cotton, 1981) 

T, = Oi 1 + 
Q lat 

C, max( T,, 253) 1 ’ (17) 

where Q,,, is given by 

Q,,,=[r,+r,+(1-i,)r,+(1-i,)r,]Le,+(r,+rs+ra+igrg+ihrh)lio, (18) 

and i, and ii, are the fractional amounts of ice in the mixed-phase graupel and hail categories, 
respectively. Eqs. ( 14-18) and the equation for e,/ are solved iteratively until convergence 
occurs. eie is governed by an equation of the same form as Eq. ( 12)) where SOURCE 
represents external heat sources such as radiative flux convergence, and SEDIM represents 
local sources or sinks due to sedimentation of ice or liquid water (Tripoli and Cotton, 198 1) . 
Oiy is conservative in the absence of sedimentation and external heating. 

Having provided either a prognostic or diagnostic means for determining all mixing ratio 
values r, one more distribution parameter (N, or 0,) must be determined so that the other 
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may be diagnosed. RAMS has the options to ( 1) specify N,, (2) specify D,, (3) prognose 
N, (though not for cloud water), or (4) in the special case where a category has a shape 
parameter v of 1 [i.e., the Marshall-Palmer distribution (Kessler, 1969) 1, specify the value 
of N,, where N, = N@,, and D, = 1 IA, where h is the slope of the Marshall-Palmer distri- 
bution. When N, is prognosed, it is governed by a conservation equation of the same form 
as Eq. (12) in which all terms are similar to those for mixing ratios. Except for testing 
purposes, N, is always prognosed for pristine ice because it is the category into which 
nucleated ice is introduced, and the number of nucleated crystals is an important parameter 
to conserve. Other species, however, commonly use one of the other options above. The 
remainder of this section describes the SOURCE and SEDIM terms in Eq. ( 12) as applied 
to all prognostic mixing ratios and to the prognostic number concentration for pristine ice 
for the case where no other categories use a prognostic number concentration. Part II of this 
paper describes the SOURCE and SEDIM terms for number concentrations when they are 
prognosed in all categories. 

2.4. Vapor and heat diffusion and hydrometeor heat budget 

The temperature of a hydrometeor often differs substantially from that of the air due to 
latent heat release or absorption in the hydrometeor and sensible heating by collisions with 
other hydrometeors. The temperature, in turn, controls the rates of heat and vapor diffusion, 
and the amount of sensible heat transfer which occurs in coalescence of hydrometeors. In 
order to compute representative hydrometeor temperatures, we formulate a heat budget 
equation for each category. For convenience, we define a category reference energy in units 
of J kg - ‘, relative to a reference state of ice at 0°C by 

Q = C,T, for ice 

Q = CT, + Li, for liquid (19) 

where T, is the mean category temperature in “C, Ci and C, are the specific heats of ice and 
liquid water, and Li, is the latent heat of fusion of water. Q is a more general variable than 
temperature in that it represents the energy associated not only with temperature but also 
with the latent heat of fusion. If Q is between zero and Lil, it implies that either the 
hydrometeor contains a mixture of ice and liquid at O”C, with the liquid fraction given by 
Q/Li,, or that the hydrometeor is supercooled liquid. An energy equation for each ice and 
liquid category may be written in terms of Q as 

where the three terms on the right represent sources or sinks associated with vapor diffusion, 
heat diffusion, and sensible heat transfer from mass conversion between categories. Melting 
or freezing of a hydrometeor do not constitute an external heat source or sink of Q, although 
they can affect the hydrometeor temperature and therefore any of the source terms. 

The definition of Q in Eq. (19) provides a convenient means for evaluating the third 
source term in Eq. (20). Whenever an amount of mixing ratio r, with energy Q, is converted 
from one ice or liquid category to another, either by coalescence or by recategorization as 
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when an ice particle melts into rain, it carries with it the energy product Q,r,. Both r, and 
Q,ri are subtracted from the old category and added to the new. Given a category mixing 
ratio and energy J and Q at a given time t, new values r* and Q* are computed following 
all such transfers in the timestep by the equations 

r* =i-+&, (21) 

and 

Q* =(QY+xQ,i-,)/r*. (22) 

Multiplying Eq. (20) by At and substituting Eq. (22) gives an expression for Q on the 
next timestep t + At 

Q r+Af=(&d+&d)At+Q*. (23) 

The net difference Q”“‘- Q’ over a timestep constitutes a heat storage term for the category 
which is most significant relative to other terms in Eq. (22) and Eq. (23) when the value 
of D, is largest. 

It is not practical to solve Eq. (23) explicitly because the heat and vapor diffusion terms 
are very sensitive to temperature and would necessitate the use of a very small time step for 
stable integration. A second consequence of their sensitivity is that they are the strongest 
regulators of hydrometeor temperatures compared with the conversion term. A practical 
means for obtaining a stable category temperature is thus to solve the diffusion and time 
dependent terms implicitly by expressing them as a function of temperature at time t + At. 
To develop this equation, we begin with the vapor diffusion equation for a single hydro- 
meteor (Pruppacher and Klett, 1978) 

where 9 is the vapor diffusivity. The ventilation coefficientf,, is given by (Cotton et al., 
1982) 

&=[ 1.0+0.229(~~]s, (25) 

where S is the shape parameter and V, is the kinematic viscosity of air. 
Multiplying by the distribution function (Eq. 2) and integrating over the distribution 

gives the mass diffusion rate per cubic meter of atmosphere: 

(26) 

where 

(27) 
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is the integrated product of ventilation coefficient and diameter. Here, we have tacitly 
assumed that pvshr and therefore hydrometeor temperature, is independent of diameter. 
Dividing Eq. (26) by pa and multiplying by At gives the change in category mixing ratio 
in a timestep due to vapor diffusion 

Ar,, = N,2m,!1F,,dt( r, - rvsh). (28) 

Because we are now dealing with a finite time interval, we must account for adjustments to 
atmospheric vapor r, during the timestep due to the vapor transfer described by Eq. (28). 
In keeping with the goal of deriving an implicit equation, we replace r, by r, - Ar,, in Eq. 
(28) to represent the vapor remaining at the end of the time interval At. Solving for A rvd 
gives 

Ar,,= 
W@FR,At( r, - rvsh) 

1 + Nr2m,bFR,A t ’ 
(29) 

in which the denominator is greater than 1 and thus reduces A r,, compared to Eq. (28). 
Eq. (29) prevents over-depletion of ambient vapor by diffusion to hydrometeors for any 
length timestep. Multiplying Eq. (29) by latent heat L (L,, or&, depending on the category) 
and by pa gives the latent heating of the category over a timestep by vapor diffusion, 

A Qvd = BhW MFR,A t( r, - rvsh ) t (30) 

1 
B= 

1 + N,2 rr$FReA t 
(31) 

The sensible heat diffused to a category is, in analogy to Eq. (28), 

AQ,,=N,2~KF,,At(T,,-T,), (32) 

where K is the thermal conductivity of air. We add Eq. (30) and (32)) and then divide by 
(par) to get the category heating over a timestep in J kg- ’ due to latent plus sensible heat 
diffusion. Substituting this expression for the diffusion terms in Eq. (23) gives 

Q ““‘=C[BLp,~(r,-r,,,)+K(T,,-T,)l +Q*, (33) 

where 

C= 
2nFR&A t 

(34) 

To close Eq. (33), we write a linearized form of the ClausiusClapeyron equation 
combined with Eq. ( 16) : 

r vsh = rvso (35) 

where the subscript 0 signifies a reference value. We note here the work reported in 
Srivastava and Coen ( 1992) which showed that a quadratic form of this equation leads to 
a significantly better approximation. They used the ambient atmospheric temperature as the 
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reference value such that in cases where the hydrometeor temperature differs substantially 
from the atmospheric value, the linear approximation given in Eq. (35) indeed gives poor 
accuracy. By experimentation, we have found that if a reference temperature is chosen using 
the formula 

T,=T,,-min[25,700(r,~--V)], (36) 

for application to liquid hydrometeors, and 

r,=min(O, T,), (37) 

for ice hydrometeors, the linear approximation is very good over all ranges of conditions 
found in the atmosphere, and avoids the added complication of a quadratic approximation. 
Substitution of Eq. (35) into Eq. (33) gives 

in which all terms are known beforehand, except Q,+d, and T, which must be solved with 
the help of Eq. (38) and the implicit relation that T, is defined at time t+ At. Eq. (38) 
along with Eq. (22) is the general equation used to compute the energy Q and temperature 
T, for all categories, but is subject to different constraints and conditions for each category. 

For rain not contacting ice particles we assume that supercooling rather than freezing 
occurs with temperatures below 0°C. Thus we always have 

T, = 
Q r+At- Lil 

Cl ’ (39) 

so Eq. (38) becomes 

For pristine ice, snow and aggregates, a number of simplifications can be made to Eq. 
(38). The heat storage term ( Q’+At- Q’) implicit in the equation is neglected under the 
reasoning that these hydrometeors have such a low mass-to-surface-area ratio that the 
diffusion terms will dominate. The conversion term in Eq. (20) is neglected because, as 
will be described later, conversions involving pristine ice, snow, or aggregates with cloud 
water, rain, graupel, and/or hail always result in mass and energy being removed, not added. 
In such conversions, the mean energy Q of the remaining pristine ice, snow, or aggregates 
is unaffected. There are also conversions between pristine ice and snow, and from pristine 
ice and/or snow to aggregates. They also produce no changes in Q, however, because the 
remaining terms in (Eq. 38) (sensible and latent heat diffusion) are identical for these 
categories and thus tend to produce the same value of T, for all. Thus, Eq. (38) reduces to 
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T, = (41) 

which is a commonly used equation for hydrometeor temperature derived from an assumed 
balance between sensible heat diffusion and latent heat release from vapor diffusion. How- 
ever, T, must be constrained to remain at or below zero for these ice categories. If the 
solution to Eq. (4 1) is above zero, it implies that melting must occur. Physically, the latent 
heat absorbed by melting holds T, at zero, causing a net diffusive influx of latent plus 
sensible heat which determines the melting rate. In this case, Eq. (41) is replaced with a 
version of Eq. (33) in which T, and Q* are set to zero, and r,,, is the value at O’C 

Q ‘+“= CIBLev~,rcI(rv - rd0) > + KTA. (42) 

The resulting value of QrtAr is positive, and its magnitude divided by Li, gives the 
fractional amount (not to exceed 1) of ice melted in the category due to diffusion during 
the given timestep. Melting of these ice categories implies conversion to graupel or rain, a 
decision process which is discussed in the next two sections. 

For graupel and hail, both the heat storage and conversion terms in Eq. (38) and Eq. 
(20) are retained as for rain. Since these categories allow both ice and liquid phases to be 
present, Q and Q* may be of either sign, and may or may not be of the same sign. The 
relation between T, and Q’+” depends on these signs. If Q* is negative, implying the 
category is totally ice, we first try setting T, = er+“/Ci to obtain 

(43) 

If a negative or zero value of Q+” results, it implies that no latent heat absorption due 
to melting occurs and Eq. (43) is valid. If Q’+” turns out positive, we return to Eq. (33) 
as for pristine ice, snow, and aggregates, and set T, to zero and r,,,, to the value at 0°C. The 
term Q * is retained for graupel and hail. This gives the same result as Eq. (42) except that 
the source term Q* is added to the right hand side. 

If Q’ is positive for graupel or hail, the category is of mixed phase and T, is zero. Thus, 
we again apply Eq. (42) with Q* on the right hand side. If this results in a positive or zero 
value of Q+ “, . it is concluded that T, remained positive throughout the timestep and that 
the result is valid. If, however, a negative value of Q + A’ results, it is concluded that sensible 
and latent heat diffusion first froze all liquid in the category, and then lowered its temperature 
below zero. The amount of time left in the timestep after freezing occurs is computed from 

(44) 
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A final (negative) value of QZ+Ar IS then evaluated from Eq. (43) in which Q* is set to 
zero and A tR replaces At in Eq. (34). As for pristine ice, snow, and aggregates, the value 
of Q”” evaluated here gives not only temperature, but also the fraction of liquid present. 
For graupel and hail, however, conversion may or may not result from melting. The decisions 
behind the conversion process are discussed in the next two subsections. The advantage of 
allowing mixed-phase hydrometeor categories is that it allows more accurate prediction of 
radar reflectivity and also the amounts of water mass shed from hailstones. 

The hydrometeor temperatures (or Q values) derived in this section implicitly include 
the effect of vapor diffusion, and are consequently the temperatures which govern the vapor 
diffusion rates. Thus, the amount of vapor diffused to a category in a timestep is evaluated 
directly from Eq. (29), in which r,,, is evaluated from Eq. (35). 

A sink for the number concentration N, of pristine ice results when the vapor diffusion 
to pristine ice is negative (i.e., when sublimation occurs). A parameterization for this sink 
is described in Harrington et al. ( 1995)) and is formulated in terms of a function F, appearing 
in the equation 

$=Fe d’,v,H . 
I ( 1 r 

The left hand side of Eq. (45) is the fractional number lost in a timestep, and F, is a function 
of three variables: the fractional mixing ratio lost in the timestep, the gamma function shape 
parameter v and the habit H of pristine ice. Harrington evaluates F, for specific values of v 
and H, and for fine increments of the quotient A rlr between 0 and 1 using an explicit ice 
evaporation model with numerous size bins. In RAMS, F, is implemented as a lookup table. 

2.5. Collision and coalescence of hydrometeors 

Differential fall speeds between individual hydrometeors of the same or different cate- 
gories cause some of them to collide and coalesce. Depending on the categories, masses 
and temperatures (or Q values) of the two colliding hydrometeors, a decision is made as 
to where to transfer the mass of coalesced hydrometeor. The rate at which the mixing ratio 
r, of species x is collected into coalesced hydrometeors due to collisions with hydrometeors 
of species y is given by the stochastic collection equation (Verlinde et al., 1990) 

dr, _ NtJL~Fp 
dt - 4p,, m(D,)(D,+4,)21u,~(D,) 

00 

where f,,,, m, and U, are defined in Eqs. ( 1), (6) and (7), respectively. The collection 
efficiency E(x, y) is the product of collision efficiency and coalescence efficiency. The 
additional factor F, not appearing in Verlinde et al. is equal to ( 1 /pa)‘.’ and accounts for 
the density effect on the terminal fall velocities. 

Verlinde et al. ( 1990) assumed that E(x, y) is independent of D, and D, so that it can be 
moved outside the integrals, a reasonable assumption for all hydrometeor classes but cloud 
droplets, where E varies strongly over the cloud droplet spectrum. They found analytic 
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Table 2 
Categories 

Collected category Collecting category Destination category 

cloud water 
pristine ice 
pristine ice 
snow 
pristine ice 
pristine ice 
pristine ice 
snow 
snow 
snow 
snow 
aggregates 
aggregates 

gravel 

rain 
pristine ice 
snow 
pristine ice 
aggregates 

gravel 
hail 
snow 
aggregates 
graupel 
hail 
graupel 
hail 
hail 

rain 
aggregates 
aggregates 
aggregates 
aggregates 

gravel 
hail 
aggregates 
aggregates 
graupel 
hail 

gravel 
hail 
hail 

solutions to Eq. (46) in terms of known functions, but found it more computationally 
expedient to solve only the integral over DY analytically while numerically computing the 
integral over D, (J. Verlinde, pers. commun.). That procedure is followed here. To further 
reduce the computational effort during model runtime, a large number of solutions to the 
integral are pre-computed and tabulated in a three-dimensional look-up table. Two of the 
table dimensions are the characteristic diameters D, and D,, which occur infe_ andf,,,. 
The third dimension is the pair (x, y) of interacting categories ranging over 32 of the 49 
total possible pairs that can be formed from the seven liquid and ice categories. The number 
of table entries required for a given level of accuracy is minimized by spacing the entries 
in uniform increments of log( 0,) and log( D,,) , and 60 entries spanning a four orders-of- 
magnitude range of each of the characteristic diameters has been found to be adequate. 
Thus, the table contains 32 X 60 X 60 entries. 

During model runtime, for any given pair (x, y) , values are interpolated from the table 
bi-linearly over log( D,) and log( D,,) to efficiently obtain a value for the double integral 
in Eq. (46). Multiplying the equation by A I gives the amount of r, coalescing with category 
y over a timestep 

(47) 

where J is the interpolated table value. In some cases, unless At is small enough, Eq. (47) 
gives a value of A r, which is greater than r,. For example, mixing ratio rates of hail particles 
colliding with cloud droplets and cloud droplets colliding with hail particles are both 
computed, as described below. Since all hail particles inside a cloud will undergo collision 
with a cloud droplet almost instantaneously, the hail collection rate is extremely large. Thus, 
A r, is limited to a maximum value of r, 

Hydrometeor collections are divided into two classes, each with its own basic rules for 
determining the destination category or categories to which Ar, is transferred. The first 
class only treats collisions between liquid and liquid or between ice and ice (mixed phase 
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categories considered as ice here). The destination is a single category, pre-determined as 
a function of the interacting pair (x, y) only and independent of the energies Q, and Q_,,. 
Table 2 lists the collected, collecting, and destination categories for all collections in this 
class. Note that in cases where the destination category is different from both the collected 
and collecting categories, the collection is repeated with the collected and collecting cate- 
gories reversed. This is how mixing ratio is extracted from both colliding categories for 
transfer to the destination category. Also, when the colliding categories are identical, the 
collected amount is simply doubled to avoid the need for duplicating the computation with 
the colliding categories reversed. As mentioned in the previous section, a quantity of energy 
Q,A r, accompanies the mixing ratio A r, from the collected to the destination category. 

The second class of collections treats mixed-phase collisions between cloud water or rain 
and any of the ice categories (except that cloud water and pristine ice interactions are 
neglected). For each of these collisions, two collection amounts are computed by Eq. (47) : 
the ice Ari collected by liquid, and the liquid Ar, collected by ice. Except for cloud water 
which is diagnostic, these mixing ratios along with the corresponding energy values QiA ri 
and Q,Ar, are subtracted from the collected categories. The total mixing ratio of the coa- 
lesced hydrometeors is 

r*=Ari+Ar, 

and their energy value is evaluated from 

(48) 

Q*=(QiAri+QJr,)lr* (49) 

similar to Eq. (22). The fractional amount of liquid contained in the coalesced hydrometeors 
after the two contributors reach thermal equilibrium with each other is the quotient Q* lZ,,i, 
limited to the range (0, 1). If this fraction is 1, r* is transferred to the rain category along 
with energy Q * r* . Otherwise, r* and Q * r* are divided between the input ice category and 
a secondary ice category, which is graupel in the case where Ar, represents cloud water, 
and hail where it represents rain. If ice contributed most of the mass to the coalesced 
hydrometeors and if they remain mostly ice because little or no melting takes place, then 
the coalesced hydrometeors are assumed to retain much of the characteristic structure of 
the input ice, and most of r* and Q*r* are returned to the input ice category. With somewhat 
greater relative inputs from the liquid category, and/or with significant melting of the 
coalesced hydrometeors, most or all of r* and Q*r* is transferred to graupel or hail. We 
are currently testing the formula 

(50) 

to determine the amount of ice returned to the input ice category; the remainder is transferred 
to the secondary ice category. If graupel is the input ice category, the secondary category 
is hail, even if cloud water is the liquid being collected. If hail is the input ice category, the 
only output ice category is hail. This formulation is partly based on the reasoning that 
coalesced hydrometeors will vary in their ratios of collected ice versus collected liquid 
because of the size ranges within both input categories, and will thus vary in the category 
they best fit into. 
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When the number concentration N, is prognosed for pristine ice only, it is decreased in 
the same proportion as mixing ratio each timestep when collection results in conversion of 
pristine ice to other categories. Part II will describe a scheme for evaluating the number 
sink when N, is prognosed for all categories. 

2.6. Ice nucleation 

Nucleation of pristine ice crystals may occur by a variety of physical mechanisms. These 
may be divided into two general categories: heterogeneous nucleation, in which an ice 
nucleus (IN) is responsible for initializing an ice crystal structure from vapor or liquid, and 
homogeneous nucleation where an IN is not involved. Parameterizations representing both 
heterogeneous and homogeneous nucleation are described here. 

Deposition nucleation is a form of heterogeneous nucleation in which vapor molecules 
attach to an IN, and may occur any time the ambient vapor mixing ratio exceeds saturation 
over ice, and the temperature is below - 5°C. Condensation-freezing nucleation occurs 
when an aerosol has the properties of both a cloud condensation nucleus (CCN) and an IN. 
Vapor molecules attach as liquid to the aerosol for its CCN property, and then freeze from 
its IN property. Condensation-freezing nucleation requires supersaturation with respect to 
liquid water, and temperatures below - 2°C. Both these types of nucleation are represented 
by a single empirically-based parameterization described by Meyers et al. (1992). This 
parameterization is a function of the supersaturation with respect to ice r,i, and is given by 

(N,)d= exp(6.269 + 12.96~~~) (51) 

where (Nl)d is the number of nucleated crystals per m3. The number ( N,)d is given as a 
total number of crystals which can nucleate under the given environmental conditions, and 
is not dependent on time or on the length of the model timestep. In RAMS, when pristine 
crystals are prognosed and already exist locally on a given timestep, the condensation- 
freezing process produces fewer crystals so that the total number will equal (N,)& When 
the existing number of crystals exceeds this amount, they are allowed to remain, but no 
additional condensation-freezing nucleation is performed. 

Contact freezing nucleation occurs when an IN comes into contact with an existing 
supercooled cloud water droplet. Transport of the IN to the droplet results from a combi- 
nation of diffusiophoresis, thermophoresis and Brownian motion. Diffusiophoresis occurs 
in supersaturated environments where droplets are growing by condensation, and is a process 
in which the net vapor mass flux toward the droplet carries IN in the flow. In RAMS, since 
exact saturation is assumed when diagnosing an amount of cloud water, a separate estimate 
of supersaturation is obtained by applying Eq. (29) to cloud water, computing A r,, as a 
residual of the net change in cloud water mixing ratio over a timestep minus all source terms 
(such as collection) other than vapor deposition, and taking r, in the equation as the ambient 
supersaturation. Thermophoresis occurs in subsaturated environments when cloud droplets 
exist but are evaporating. It is a flux of aerosols toward the droplet resulting from the 
gradient of air molecular speed (temperature) when the droplet is evaporatively cooled 
below the environmental temperature. As for diffusiophoresis, the separate estimate of 
subsaturation is used. Thermophoresis dominates over diffusiophoresis, so their net effect 
is to increase contact nucleation in subsaturated conditions and decrease it in supersaturated 
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conditions. Brownian motion is a random-walk transport of aerosols due to collisions with 
air molecules, and results in some IN colliding with cloud droplets. 

Parameterizations of the numbers of crystals produced by contact nucleation due to 
diffusiophoresis, thermophoresis and Brownian motion are described in Cotton et al. ( 1986) 
and are given by, respectively, 

RT 
= F,F2-= 

hJ, 

_ F,Fz f,, 
Pa 

and 

(52) 

(53) 

=F,rCI,, (54) 

where $I~ is the aerosol diffusivity. The expressions F,, F2 andf, are defined by 

F, = 2rrD‘.%Ja, 

F,=;(T,-T,,), 

and 

(55) 

(56) 

f,= 
0.4 [ 1 + 1.45K,, + 0.4K,, exp( - 1 /K,,) ] ( K + 2.5&~,) 

(1+3&)(2~+5~&+~,) ’ 
(57) 

where DC is the cloud droplet diameter, N,c is the cloud droplet concentration, N, is the 
concentration of active contact nuclei, K, is the aerosol thermal conductivity, K, is the 
Knudsen number, and T,, is the cloud droplet temperature. The Knudsen number K, is 
defined as 

(58) 

where A, = 6.6 X 10 - 8 m is the mean free path at reference temperature To = 293.15 K and 
reference pressure po= 101325 Pa, and R, is the aerosol radius. The aerosol diffusivity I/J= 
is defined by 

ccI,= kTcc -Cl +Kd, 
67%P 

where k is the Boltzmann constant, and p is the dynamic viscosity of air. A parameterization 
for the number of IN per m3 available for contact freezing nucleation is described in Meyers 
et al. (1992), and is given by 

N, = exp(4.11- 0.262T,,), 

where a contact nuclei size of lo-’ m is assumed. 

(60) 
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Homogeneous nucleation of supercooled water is a spontaneous process in which a small 
group of water molecules take on a crystal lattice structure due to random motions. Once 
the structure is begun, it quickly grows throughout the entire water droplet. The probability 
of a given number of molecules initiating an ice lattice in a unit time interval is a function 
primarily of temperature, but also depends on the amount and type of impurities of the 
water, and on the droplet curvature. The probability of a given droplet having an ice nucleus 
form anywhere within it (resulting in freezing of the entire droplet) is, in addition to the 
above, a strong function of the droplet volume. For activated cloud droplets where the solute 
and curvature effects are negligible, DeMott et al. ( 1994) derived from empirical data the 
following expression to represent the number of cloud droplets freezing in a timestep 

cc 

(IV,),=& - 10+$At n(D) 
1 1 dD 

0 

(61) 

where 

4 = - 606.3952 - 52.661 lT,, - 1 .7439Tzc - 0.0265T2, - O.C001536T& (62) 

This nucleation formula is applied in the temperature range - 50°C < T,, < - 30°C. At 
colder temperatures, the value at - 50°C is applied, which is essentially nucleation of all 
cloud droplets. For a given At and cloud distribution shape parameter, both of which are 
constant in time in RAMS, the integral in Eq. (61) is a function of T,, and D, only. For 
computational efficiency, the integral is pre-computed for many values of T,, and D, to 
create a two-dimensional table of values, and required values are bi-linearly interpolated 
from the table during model execution. 

For unactivated haze particles, DeMott et al. ( 1994) derived the equation 

(63) 

which describes the fractional number of haze particles freezing homogeneously in a unit 
time of one second. Here, D and D, refer to the CCN spectrum, which we have generalized 
to follow a gamma distribution as in Eq. (2). The quantities D, and b are complicated 
functions of atmospheric temperature and relative humidity, and the type of solute, assumed 
to be ammonium sulfate in this work, and D, = 1.02X lop6 m (DeMott et al., 1994). 
Assuming a fixed background CCN spectrum, the integral in Eq. (63) is thus a function of 
only temperature and relative humidity. As is done for evaluating the number of nucleating 
cloud droplets, the integral values are pre-computed and stored in a two-dimensional table, 
from which required values are later interpolated. The fraction of haze particles freezing in 
a model timestep At is approximated by the bracketed term in the following equation, and 
is of a form which cannot exceed 1. The actual number freezing is given by 

(N,),,=%[ 1 -exp( -.LA~)l~ (64) 

where N,, is the number concentration of haze particles. The total number of nucleating ice 
crystals by all processes is given by 
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(65) 

which is added to the number concentration N, for pristine ice. The nucleation contribution 
to mixing ratio is evaluated from the expression 

Ar, = AN,m,lp, (66) 

where m, is an assumed initial mass of a nucleated particle. 

2.7. Other conversions 

Thus far we have discussed the conversion of mass from one category to another that 
results from nucleation of pristine ice from a vapor or cloud water source, diffusive flux of 
vapor to and from liquid and ice, and collisions between hydrometeors (including the effect 
of melting or freezing upon collision). Additional conversions which are parameterized in 
the model are discussed in this section. 

Secondary ice production based on the Hallett-Mossop theory is parameterized as 
reported in Cotton et al. ( 1986). This is a process connected with riming in which a fraction 
of the rime splinters into tiny crystals. A transfer of mixing ratio to pristine ice from the 
other ice categories is carried out when riming occurs, and the number of pristine crystals 
is increased. A transfer of mixing ratio from pristine ice to snow is carried out when pristine 
ice grows by vapor deposition, and a reverse transfer is made when snow evaporates 
(Harrington, 1994). This is in keeping with our definition of the snow category as containing 
“mostly pristine” ice crystals of larger diameter than those in the pristine ice category. The 
transfer to snow during vapor deposition is assumed to be made on the larger crystals in the 
pristine ice distribution, while the reverse transfer during evaporation is assumed to be on 
the smaller snow crystals. This keeps the characteristic diameters of both categories within 
their assumed ranges. A constant threshold diameter I$,, which we currently set to 
1.25 X 10e4 m, is used as an upper bound to the pristine ice characteristic diameter and a 
lower bound to the snow characteristic diameter. This value is based on ice crystal size- 
spectra observed in cirrus clouds (Arnott et al., 1993; Mitchell et al., 1993). While both 
pristine ice and snow follow complete gamma distributions and therefore implicitly contain 
crystals of all diameters, the part of either distribution contained on the far side of D, (the 
largest pristine ice or the smallest snow) is what is assumed to be involved in the conversion. 

The mass and number transfer rates of pristine ice to snow are taken as the rates of mass 
and number growth of the pristine ice distribution in the region D, < D < 00 due to vapor 
deposition. These may be expressed as 

(67) 

(68) 
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where the subscripts v and p refer to the vapor deposition process and the pristine ice 
category. By applying Leibniz’ rule, chain differentiating, and using Eq. 26 the following 
forms of the above equations are obtained 

(69) 

(70) 

where T( 1 ,D,/D,) is the first moment of the incomplete gamma distribution described in 
general as, 

Eq. (70) describes the rate of change in number concentration in the region D, < D < ~0 due 
to the spectral shift of pristine ice crystals across the diameter threshold Db. The first term 
in Eq. (69) is analogous, but applies to the mass contained in the crystals that cross D,. 
The second term describes the vapor depositional growth of pristine ice mass in the region 
Db <D < ~0. This second term is kept in the description of mass transfer because it is a mass 
source for snow. 

The corresponding equations for mass and number transfer from snow to pristine ice 
when snow evaporates are 

(72) 

(73) 

where the subscript s refers to the snow category. Eq. (69) is analogous to Eq. (72)) except 
that the second term, which represents a source for snow in Eq. (69)) is dropped, because 
physically it represents evaporation and is thus not a source for the pristine ice category. 
When N, is prognosed only for pristine ice, the only available N, value for snow is that 
which is specified or diagnosed. That value, however, can be used to estimate the number 
concentration n( Db) at the cutoff diameter from Eq. (2). 

During ambient conditions that are subsaturated with respect to ice, there exists the 
possibility of number concentration “build-up” in the pristine ice category. In order to 
correct this, a scheme in which pristine ice number concentration loss to evaporative 
processes has been developed. This was accomplished by noting that the fractional number 
loss ratio AN,/N,, should be a strong function of the pristine ice fractional mass loss ratio 
ArJr,, and of the distribution shape parameter, V. Using this hypothesis a bin model was 
constructed in which the number loss ratio was found as a function of the mass loss ratio 
and the shape parameter, Y. Look-up tables were constructed for the number loss ratio for 
ranges of mass loss from 0.01 to 1.0, v values from 1 to 5 and over all of the different 
crystal habits. Testing of the model shows that variation in external parameters (such as 
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temperature, pressure, saturation, and 0,) affect the number loss ratio only to a small 
degree. Values of D, can cause the most variation, however this occurs only over very wide 
ranges of D,. 

Collision and coalescence of cloud droplets to form rain is not readily treated by solving 
the stochastic collection equation due to the large gap in diameters of cloud droplets and 
rain, and to the strong variations of E(x, y) with cloud droplet diameter. Thus, we use a 
separate autoconversion parameterization (Berry and Reinhardt, 1974) given by 

drr P,& -=- 
dt p,~’ 

(74) 

where 

(75) 

r=g[OS X 106D,,( 1+ v) -“.5-0.75] -‘. 
ac 

(76) 

In analogy with the application of Eq. (50) to diagnose melting of coalesced hydrome- 
teors and consequent mass conversion to new categories, similar melting conversions are 
performed for the categories as a whole when Q* is evaluated in Eq. (22). At this stage in 
the sequence of computations, the sources and sinks of mass and energy from all other 
processes have been summed, and any melting of ice categories is diagnosed as resulting 
from an energy surplus. As done for coalesced hydrometeors, the quotient Q * /Li, is taken 
as the fraction of liquid in the category. The decisions governing the transfer of mass and 
energy from ice categories following melting are similar to those made for coalesced 
hydrometeors, except that no riming or freezing is involved here. Complete melting of ice 
categories produces rain. Partial melting of snow and aggregates cause some of their mass 
to be converted to graupel, and partial melting of graupel causes some of its mass to be 
converted to hail. Individual pristine ice crystals are assumed to melt entirely or not at all. 
If the diagnosed fraction of liquid is between 0 and 1, that fraction is transferred to rain, 
while the ice remains in the pristine ice category. The number concentration for pristine ice 
is reduced in the same proportion as mixing ratio during melting, as is done for collection 
of pristine ice. Given the small size of pristine ice, complete melting of the category to rain 
is likely to occur rapidly once melting begins. We compute the mixing ratio of ice transferred 
to the secondary category by 

(77) 

based on the reasoning that an amount of melt water produced will convert an equal amount 
of ice to a more dense structure, and together they should be recategorized. This formula is 
experimental. 

Although the hail category is permitted to contain liquid, excess liquid is shed to the rain 
category. The amount shed is based on a formula proposed by Rasmussen et al. ( 1984) for 
the maximum liquid water mass m, that can be retained by an ice core of mass Ilti, which in 
units of grams is given by 
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m,,,,=0.268 X 10-3+0.1389mi. (78) 

It would be possible to integrate this formula over the entire hail distribution to obtain a 
maximum allowable value of liquid to mass ratio for the category, and shed when the 
category liquid content exceeds this value. However, there are physical situations where, 
due to differential melting and liquid collection rates with hail size, some hail sizes will be 
below the threshold for shedding while others will exceed it; thus, this effort seems unwar- 
ranted. Furthermore, other authors (e.g., Chong and Chen, 1974) have observed signifi- 
cantly different liquid water retention amounts. We therefore take the simple approach of 
applying Eq. (78) directly to the mean mass Zi of the hail distribution, and shedding when 
the fractional liquid water content exceeds the maximum allowed for that mass. 

2.8. Sedimentation 

Gravitational settling of hydrometeors causes them to fall relative to air. Since transport 
of hydrometeors due to resolved and subgrid air motions in the model is evaluated elsewhere 
(see Eq. 12)) sedimentation only deals with the mass-weighted relative fall velocity between 
the hydrometeor and air, which is given by Eq. (9). We first evaluate Eq. ( 12) without the 
SEDIM ( r) term, and update mixing ratio r based on all other terms. Sedimentation is then 
carried out on the updated r to obtain a final value for the timestep. 

A Lagrangian scheme is used to transport the mixing ratio from any given grid cell to a 
lower height in the vertical column. Before sedimentation, the mixing ratio is identified as 
a collection of volumes each corresponding to a grid cell bounded by a top height ztop and 
bottom height zbot. The volume is assumed to fall at speed U, for the timestep, resulting in 
new heights of the top and bottom surfaces of the volume given by 

Ztopnew = Ztop - iT,A t, 

and 

Zhotnew = Zhot - U,A,. (80) 
We then identify which grid cell or cells are overlapped by the displaced volume, and in 
what proportion. The mixing ratio is transferred from the original grid cell to the new ones 
in the given proportions. This scheme allows sedimentation which is more rapid than one 
grid level per timestep (a limiting velocity of Eulerian methods), which can often occur 
when vertical grid stretching is used to provide high resolution near the ground. 

In evaluating the SEDIM term for number concentration for pristine ice, we, currently 
transport N, in the same proportion as mixing ratio. However, we are developing a sedi- 
mentation scheme which allows differential fall speeds of both mass and number as a 
function of D to be applied in cases where number is prognosed for all species. 

3. Model tests 

In this section we present results of numerical simulations with RAMS using the new 
microphysics package. The primary purpose of these experiments is to demonstrate model 
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Fig. 2. Experiment 1 temperature and vector velocity fields at 15 minutes. Temperature contour interval is 6°C. 
and maximum length vector represents [ 57 m s - ‘I. 

behavior for an idealized (convective) system, and to explore some of the effects that the 
expanded capabilities of the model can have on model solutions. For example, introduction 
of the generalized gamma distributions for all categories allows a much greater diversity of 
hydrometeor spectra than the former use of only Marshall-Palmer distributions. In addition, 
we vary a few other selected parameters and examine their effects. 

These simulations are not intended as a verification of the microphysical model, except 
to point out that the microphysical, temperature and velocity fields, and precipitation 
amounts, are within physically-expected limits for the given atmospheric environment. 
Verification of the model against observations, in the form of case studies of orographic 
precipitation over the Colorado Rockies and a supercell storm, are currently being conducted 
with the new scheme, and will be reported elsewhere. In those studies, observations of shape 
parameters and mean diameters of hydrometeor categories are generally unavailable. For 
this reason, and because, as demonstrated below, the simulation results are often sensitive 
to specified microphysical parameters, verification must include comparisons of observed 
features such as precipitation amount, location, and time, against the model for several 
different parameter settings. 

For simplicity, we perform idealized simulations in a two-dimensional computational 
domain over flat terrain, with no surface fluxes of heat or moisture. A deep convective cell 
is simulated, which is expected to produce large amounts of both liquid and ice. A com- 
putational domain 24 km deep and 60 km in horizontal extent is used, with grid spacing of 
300 m both horizontally and vertically. Initial conditions consist of zero winds, temperatures 
of 306 K and 218 K at the surface and 11 km, respectively, with a constant lapse rate 
between and constant temperature above, and a water vapor mixing ratio of 15 g kg - ’ 
below 2 km and very dry air above 3 km. A Rayleigh friction absorbing layer is used above 
18 km to damp gravity waves and prevent their reflection off the upper rigid lid. Convection 
is initiated by a Skm-wide bubble of temperature 5 K warmer warmer and 2 g kg- ’ moister 
than the environment, horizontally-centered in the domain in the lowest 3 km. 

In all experiments, we prognose N, for pristine ice, specify N, for cloud droplets, and 
specify & for all other categories. We define a control experiment, denoted by Experiment 
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Fig. 3. Experiment I microphysical fields at 15 minutes. Contour intervals shown in brackets. Units are Lg kg-’ I 
formixingratios:(A)r,[l.O],(B) r,[0.5],(C)r,[l.O],(D)N,forpristineice[500001-’],(E)r, 10.0031, 
(F) r, LO.31, (G) rg 10.21, (H) r,, 11.01. 

1, in which the shape parameter v is set to 1 (the Marshall-Palmer distribution) for all 
categories, N, = 300 cmp3 for cloud droplets, and 0;;; = 0.1 cm for the rain, snow, aggregate, 
and graupel categories, and 0.3 cm for the hail category. Three additional experiments are 
performed, numbered 2 to 4, in which one parameter is set different from the control case. 



54 R.L. Walk0 et al. /Atmospheric Research 38 (1995) 29-62 

lb. 
14. 
12. 

r 10. 
-r 8. 
N 

6. 
4. 
2. 
0. 

-10. -5. 0. 5. 10 0. -5 0. 5 1 
x (km1 x lkml 

Fig. 4. Experiment two microphysical fields at 15 min. Contour intervals are identical with corresponding fields 
of Fig. 3. (A) r,, (B) r,, (C) rP, (D) N, for pristine ice, (E) r,, (F) r,, (G) re, (H) r,,. 

Convective motion develops nearly identically in the first 15 to 20 min for all experiments. 
It is dominated by the initial warm bubble in the first few minutes, and by latent heat release 
for many minutes afterward. The updraft velocity reaches a maximum strength of about 55 
m s-‘, between 15 and 20 min, and then weakens due to significant precipitation loading 
in the updraft location, plus reduced convective instability. Fig. 2 shows the vector velocity 
and temperature fields at 15 min for Experiment 1. The central updraft is evident, as is a 
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Fig. 5. Experiment 3 microphysical fields at 15 min. Contour intervals are identical with corresponding fields of 
Fig. 3. (A) r,, (B) r,,, (C) N,forpristineice, (D) ra, (E) rg, (F) r,,. 

collocated warm temperature perturbation resulting from latent heat release. Secondary, 
weaker updrafts and temperature maxima have developed around 5 km away on either side 
due to propagating gravity waves from the initial convective pulse in the center. Strong 
horizontal flow away from the updrafts occurs near tropopause level. The freezing level is 
slightly above 4 km, although near 5 km in the central updraft. The velocity and temperature 
fields are nearly identical at this time for all other experiments, and are thus not shown. At 
30 min, the main updraft has disappeared or substantially weakened in all experiments, and 
considerable variation exists between the velocity fields. In contrasting microphysical fields 
between experiments, we thus concentrate on the time of 15 min so that differences are not 
a result of differing kinematics. At this relatively early time in the simulation, the larger 
hydrometeor categories have not been in existence long, and no significant precipitation has 
reached the ground. 

Fig. 3 shows the pristine ice crystal concentration, and the mixing ratio fields for cloud 
water, rain, pristine ice, snow, aggregates, graupel, and hail for Experiment 1. The cloud 
water field reaches a mixing ratio of 8 g kg-’ in the main updraft at a height of 7 km. This 
large value reflects the rapid condensation of water vapor in the strong updraft, and the 
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Fig. 6. Experiment 4 microphysical fields at 15 min. Contour intervals are identical with corresponding fields of 
Fig. 3. (A) r,, (B) r,, (C) r,,. 

comparative slowness of conversion of cloud water to rain and ice. Weaker maxima in the 
cloud water field appear in the secondary updrafts. The rain mixing ratio is mostly below 
0.5 g kg-‘. Pristine ice begins forming above 6 km in the main updraft due to heterogeneous 
nucleation. Some of these crystals combine to form aggregates, while others collide with 
rain to form hail. Riming of aggregates produces graupel, and heavy riming of graupel 
produces additional hail. The result of all these processes is that hail becomes the most 
abundant hydrometeor mixing ratio in the main updraft after cloud water. The graupel and 
aggregates fields have a very similar spatial pattern. This largely reflects the previous history 
of the convection in which cloud water and pristine ice both formed in the single original 
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Fig. 7. Rain and hail fields at 25 min. Contour intervals are identical with corresponding fields of Fig. 3. (A) 
Experiment 1 r,, (B) Experiment 1 r,,, (C) Experiment 4 I-,, (D) Experiment 4 r,,. 

updraft. Graupel and aggregates were both produced in this environment and subsequently 
advected upward and outward as the flow field evolved. 

Near 10 km, where the temperature is close to - 40°C (see Fig. 2), homogeneous 
nucleation of cloud droplets in the updraft occurs, which produces ice mixing ratios exceed- 
ing4gkgg’ and ice crystal concentrations close to 2X 16 1-i. Such high concentrations 
result directly from the specified high cloud droplet concentration, and the fact that homo- 
geneous freezing produces one crystal per cloud droplet. In this simulation, it is evident that 
most pristine ice is produced through homogeneous, rather than heterogeneous, nucleation. 
The mixing ratio field of aggregates strongly resembles that for pristine ice due to direct 
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Fig. 8. Accumulated precipitation at 30 min. (A) Experiment 4 total, (B) Experiment 4 hail, (C) Experiment 4 
rain, (D) Experiment 1 total, (E) Experiment 2 total, (F) Experiment 3 total. 
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conversion by coalescence, and with values reaching 2 g kg-‘, aggregates represent a 
significant sink of pristine ice. 

The amount of snow forming is quite small, mainly because considerable time is required 
for an ice crystal to grow by vapor diffusion to the larger size of snow, and because rapidly 
rising parcels soon undergo homogeneous freezing of cloud water where ice crystals become 
so numerous that they strongly compete for vapor. Most of the snow is found below the 
homogeneous freezing level, where there are relatively few pristine ice crystals, and in the 
weaker secondary updrafts where there is presumably more time for the larger crystals to 
form during ascent while vapor is abundant. (We mention here that in simulations of gradual 
orographic lifting performed elsewhere with this model, snow mixing ratios comparable 
with pristine ice have been produced.) 

Experiment 2 differs from the control in that it uses a gamma distribution for all categories 
with v = 3. When changing this parameter, one will implicitly change all moments of the 
distribution except for at most one. We have chosen the mean mass (third moment) as the 
moment to hold constant for rain, snow, aggregates, graupel, and hail, so that the ratio of 
mixing ratio to number concentration will be unchanged. This implies that the characteristic 
diameter D, is altered for these categories. For cloud water, we hold number concentration 
constant, so that the ratio of mixing ratio to mean mass will be unchanged. This seems the 
most logical way to examine the results of changes in the shape parameter V. 

Fig. 4 shows the set of fields for Experiment 2 corresponding to the Experiment 1 fields 
in Fig. 3. A basic difference is that conversion of cloud water to rain within the central 
updraft is more rapid, resulting in a greatly reduced cloud water mixing ratio above 4 km, 
and a corresponding increase in rain up to 4 g kg-‘. Note that in increasing the shape 
parameter from 1 to 3, for a given G, the mean diameter D,,,,, for cloud water is increased 
by about 40%. The autoconversion rate increases sharply with D,,,,, (Berry and Reinhardt, 
1974). 

One consequence of the large rain production is that conversion of rain (coalescing with 
ice) to hail is much more rapid in the updraft between 6 and 8 km; the hail mixing ratio is 
nearly doubled at 8 km compared with Experiment 1. This conversion also depletes the 
rain, which disappears above 8 km. Continued conversion of cloud water to hail is greatly 
reduced above 8 km in contrast to Experiment 1, however, so the resulting hail mixing 
ratios at 10 km in the main updraft are very similar. A second consequence is that the 
reduced cloud water below the homogeneous freezing level causes less riming of snow and 
aggregates to produce graupel, whose mixing ratios are well below those of Experiment 1. 
Snow appears in Experiment 2 at several times the mixing ratio of Experiment 1, but the 
amount present is still much smaller than other categories. Possibly reduced collisions with 
graupel are responsible for the greater snow present. 

At the homogeneous freezing level ( 10 km), Experiment 2 has somewhat less cloud 
water remaining in the central updraft than Experiment 1, and thus less pristine ice is 
produced above. However, more pristine ice coalesces into aggregates in Experiment 1, so 
the remaining pristine ice mixing ratios and number concentrations are similar in the two 
cases. The reduced aggregation is in part a direct consequence of the higher shape parameter, 
which decreases the spectral width of the pristine ice and makes its fall velocities more 
uniform. 
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Experiment 3 is identical to Experiment 1 except that N, of cloud droplets is increased to 
1000 cm- 3 as if the environment contains dirtier continental air. Selected results are shown 
in Fig. 5. The most immediate consequence of large cloud droplet concentration is a reduced 
droplet diameter, and a greatly reduced conversion of cloud water to rain. There is in fact 
virtually no rain present in the simulation at 15 min, and the field is therefore not shown. In 
the central updraft below the homogeneous freezing level, nearly all condensate remains as 
cloud water, resulting in cloud water mixing ratios reaching 9 g kg- ‘. An abrupt conversion 
to pristine ice occurs immediately above, and produces an equivalent ice mixing ratio. The 
ice crystal concentration is, as would be expected, about triple the previous value, resulting 
directly from homogeneous nucleation of cloud droplets. Snow (not shown) is not appre- 
ciably affected by the cloud droplet concentration, probably because it develops mostly 
from ice that has been heterogeneously nucleated, and the development of such ice below 
the homogeneous freezing level is not dependent on cloud water. Aggregates are more 
abundant than in Experiment 1 because of the greater supply of pristine ice. Graupel is 
likewise more abundant, owing largely to the increased aggregates (recall that pristine ice 
does not rime). Hail is largely absent, however, mainly because of the lack of rain. Thus, 
the higher number of cloud droplets causes most of the water to remain in the lighter ice 
categories rather than rain and hail. 

In Experiment 4, &r of hail is increased to 1 cm, but all other parameters are identical 
with the control case. Selected results at 15 min are given in Fig. 6. The larger hail has 
almost no effect on the lighter ice categories compared with Experiment 1, and these are 
thus not shown. Because of its greater fall speed, significant hail extends downward to 3 
km, compared with 5 km in Experiment 1 in sedimentation lobes either side of the central 
updraft, and likewise extends lower within the updraft. This is well below the freezing level, 
and some of the hail consequently melts to rain. The rain falls more slowly, and is thus 
carried upward in the updraft. Production of additional rain becomes significant in the 
updraft due to collection of cloud droplets, and consequently more rain plus less cloud water 
results in comparison with Experiment 1. 

At 25 min, precipitation is close to maximum intensity in all experiments, but the amounts 
differ widely. Fig. 7 compares the rain and hail mixing ratio fields between Experiments 1 
and 4, which produce the most surface precipitation. Hail is concentrated mainly in the 
center in both cases, although the hail shaft is particularly narrow in Experiment 4, while 
mixing ratios over 1 g kg-’ occur over a 15 km wide band in Experiment 1. The much 
larger hail diameter in Experiment 4, which causes higher fall velocities, is largely respon- 
sible for this difference. The higher fall velocity has also caused most of the hail to have 
fallen out of the air by this time, leading to the lower total hail amount in Experiment 4, 
while both the higher velocity and larger hail diameter cause most of the hail to reach the 
ground without melting in Experiment 4, in contrast to Experiment 1. The rain in both 
experiments is almost entirely contained below 3 km, and is produced almost entirely by 
hail melting and shedding below the freezing level. Because of the slower melting rate of 
the large hail in Experiment 4, rain is confined even closer to the surface. 

Fig. 8 compares the total accumulation of precipitation at the surface for all Experiments 
at 30 min by which time precipitation has slowed. Approximately 1 cm has fallen in the 
center region in Experiment 1, all in the form of rain, while Experiment 2 has produced 
about half this amount. This is mostly due to the fact that Experiment 2 has considerably 
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more pristine ice remaining in the upper atmosphere than all other Experiments, a result of 
a reduced aggregation rate owing to the narrower spectral width of ice for this case. 
Experiment 3 has the greatest mass remaining as aggregates of all cases, plus the greatest 
combined mass of pristine ice, snow, aggregates and graupel. As mentioned above, the 
higher cloud droplet concentration for this case inhibited the conversion to rain and con- 
sequently to hail. Consequently, Experiment 3 has the lowest precipitation total of all cases. 
Experiment 4 has by far the greatest surface accumulation at 30 min, and is the only case 
to have any hail reaching the surface. The sum of remaining pristine ice, snow, aggregates, 
and graupel mass for this case is intermediate between Experiments 1 and 2. The high total 
precipitation at the surface is mainly due to the fact that nearly all rain and hail have fallen 
by this time, while in Experiments 1 and 2, much remains in the atmosphere. 

4. Summary 

The microphysical parameterization presented in this paper represents a collection of 
several new technological advancements, and a culmination of a long history of research 
and development. New features include: - Use of generalized gamma distributions for all 
hydrometeor categories - Introduction of separate graupel and hail categories which allow 
both liquid and ice phases-A double spectrum for the representation of ice crystals, allowing 
a bi-modal spectrum to develop if dictated by the model physics - Implementation of new 
parameterizations of homogeneous nucleation of ice from haze and cloud water - Use of 
the stochastic collection equation for all hydrometeor collisions other than autoconversion 
of cloud water, and an efficient table lookup of collection integral values - Solution of 
hydrometeor heat budget equations which include sensible heat transfer in inter-species 
collisions 

The initial sensitivity tests reported here demonstrate physically plausible results and 
responses to changes in input parameters. A wide range of additional tests are to be carried 
out, with comparisons against data gathered from a number of field programs, as well as 
comparisons with explicit bin model calculations. The model is intended to serve as a major 
tool to support basic research on convective storms and mesoscale convective systems, 
cirrus clouds, and stratocumulus clouds, as well as applied research in mesoscale forecasting 
of clouds, precipitation, ceilings, and visibility. 
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